Preliminary Exam - Fall 1998

Problem 1 Let M be a metric space with metric d. Let C be a compact subset of M, and let $(U_{\alpha})_{\alpha \in I}$ be an open cover of C. Show that there exists $\epsilon > 0$ such that, for every $p \in C$, the open ball $B(p, \epsilon)$ is contained in at least one of the sets U_{α} .

Problem 2 Find a function y(x) such that $y^{(4)} + y = 0$ for $x \ge 0$, y(0) = 0, y'(0) = 1 and $\lim_{x \to \infty} y(x) = \lim_{x \to \infty} y'(x) = 0$.

Problem 3 Prove that for any real $\alpha > 1$, $\int_0^\infty \frac{dx}{1+x^{\alpha}} = \frac{\pi/\alpha}{\sin(\pi/\alpha)}$.

Problem 4 Let f be analytic in the closed unit disc, with $f(-\log 2) = 0$ and $|f(z)| \leq |e^z|$ for all z with |z| = 1. How large can $|f(\log 2)|$ be?

Problem 5 Let $f : \mathbb{R}^n \to \mathbb{R}$ be a function such that

- 1. the function g defined by g(x,y) = f(x+y) f(x) f(y) is bilinear,
- 2. for all $x \in \mathbb{R}^n$ and $t \in \mathbb{R}$, $f(tx) = t^2 f(x)$.

Show that there is a linear transformation $A : \mathbb{R}^n \to \mathbb{R}^n$ such that $f(x) = \langle x, Ax \rangle$ where $\langle \cdot, \cdot \rangle$ is the usual inner product on \mathbb{R}^n (in other words, f is a quadratic form).

Problem 6 Let A and B be linear transformations on a finite dimensional vector space V. Prove that $\dim \ker(AB) \leq \dim \ker A + \dim \ker B$.

Problem 7 A real symmetric $n \times n$ matrix A is called positive semi-definite if $x^t Ax \ge 0$ for all $x \in \mathbb{R}^n$. Prove that A is positive semi-definite if and only if tr $AB \ge 0$ for every real symmetric positive semi-definite $n \times n$ matrix B.

Problem 8 Let R be a finite ring with identity. Let a be an element of R which is not a zero divisor. Show that a is invertible.

Problem 9 Suppose that G is a finite group such that every Sylow subgroup is normal and abelian. Show that G is abelian.

Problem 10 Let f be a real function on [a, b]. Assume that f is differentiable and that f' is Riemann integrable. Prove that

$$\int_a^b f'(x) \, dx = f(b) - f(a).$$

Problem 11 Find the minimal value of the areas of hexagons circumscribing the unit circle in \mathbb{R}^2 . Note: See also Problem ??.

Problem 12 Let $\varphi(x, y)$ be a function with continuous second order partial derivatives such that

1. $\varphi_{xx} + \varphi_{yy} + \varphi_x = 0$ in the punctured plane $\mathbb{R}^2 \setminus \{0\}$, 2. $r\varphi_x \to \frac{x}{2\pi r}$ and $r\varphi_y \to \frac{y}{2\pi r}$ as $r = \sqrt{x^2 + y^2} \to 0$.

Let C_R be the circle $x^2 + y^2 = R^2$. Show that the line integral

$$\int_{C_R} e^x (-\varphi_y \, dx + \varphi_x \, dy)$$

is independent of R, and evaluate it.

Problem 13 Let f be an entire function. Define $\Omega = \mathbb{C} \setminus (-\infty, 0]$, the complex plane with the ray $(-\infty, 0]$ removed. Suppose that for all $z \in \Omega$, $|f(z)| \leq |\log z|$, where $\log z$ is the principal branch of the logarithm. What can one conclude about the function f?

Problem 14 Let z_1, \ldots, z_n be distinct complex numbers, and let a_1, \ldots, a_n be nonzero complex numbers such that $S_p = \sum_{j=1}^n a_j z_j^p = 0$ for $p = 0, 1, \ldots, m-1$ but $S_m \neq 0$. Here $1 \leq m \leq n-1$. How many zeros does the rational function $f(z) = \sum_{j=1}^n \frac{a_j}{z-z_j}$ have in \mathbb{C} ? Why is $m \geq n$ impossible.

Problem 15 Let A and B be $n \times n$ matrices. Show that the eigenvalues of AB are the same as the eigenvalues of BA.

Problem 16 Let B be a 3×3 matrix whose null space is 2-dimensional, and let $\chi(\lambda)$ be the characteristic polynomial of B. For each assertion below, provide either a proof or a counterexample.

- 1. λ^2 is a factor of $\chi(\lambda)$.
- 2. The trace of B is an eigenvalue of B.
- 3. B is diagonalizable.

Problem 17 Let \mathbf{F} be a finite field with q elements. Denote by $GL_n(\mathbf{F})$ the group of invertible $n \times n$ matrices with entries if \mathbf{F} . What is the order of this group?

Problem 18 Show that the field $\mathbb{Q}(t_1, \ldots, t_n)$ of rational functions in n variables over the rational numbers is isomorphic to a subfield of \mathbb{R} .