Preliminary Exam - Fall 1999

Problem 1 Let V and W be finite dimensional vector spaces, let X be a subspace of W, and let $T: V \to W$ be a linear map. Prove that the dimension of $T^{-1}(X)$ is at least dim $V - \dim W + \dim X$.

Problem 2 Let E_1, E_2, \ldots be nonempty closed subsets of a complete metric space (X, d) with $E_{n+1} \subset E_n$ for all positive integers n, and such that $\lim_{n \to \infty} \text{diam}(E_n) = 0$, where diam(E) is defined to be

$$\sup\{d(x,y) \mid x, y \in E\}.$$

Prove that $\bigcap_{n=1}^{\infty} E_n \neq \emptyset$.

Problem 3 Let R be a ring with identity element. Suppose that $\mathfrak{I}_1, \mathfrak{I}_2, \ldots$, \mathfrak{I}_n are left ideals in R such that $R = \mathfrak{I}_1 \oplus \mathfrak{I}_2 \oplus \cdots \oplus \mathfrak{I}_n$ (as additive groups). Prove that there are elements $u_i \in \mathfrak{I}_i$ such that for any elements $a_i \in \mathfrak{I}_i$, $a_i u_i = a_i$ and $a_i u_j = 0$ if $j \neq i$.

Problem 4 Let the rational function f in the complex plane have no poles for $\Im z \ge 0$. Prove that

$$\sup\{|f(z)| \mid \Im z \ge 0\} = \sup\{|f(z)| \mid \Im z = 0\}.$$

Problem 5 Let M_n be the vector space of real $n \times n$ matrices, identified in the usual way with the Euclidean space \mathbb{R}^{n^2} . (Thus, the norm of a matrix $X = (x_{jk})_{j,k=1}^n$ in M_n is given by $||X||^2 = \sum_{j,k=1}^n x_{jk}^2$.) Define the map f of M_n into M_n by $f(X) = X^2$. Determine the derivative Df of f.

Problem 6 Let $T: V \to V$ be a linear operator on an n dimensional vector space V over a field \mathbf{F} . Prove that T has an invariant subspace W other than $\{0\}$ and V if and only if the characteristic polynomial of T has a factor $f \in \mathbf{F}[t]$ with $0 < \deg f < n$.

Problem 7 Let G be a finite group acting transitively on a set X of size at least 2. Prove that some element g of G acts without fixed points.

Problem 8 Evaluate the integral

$$I = \frac{1}{2\pi i} \int_{|z|=1}^{\infty} \frac{(z+2)^2}{z^2(2z-1)} dz \,,$$

where the direction of integration is counterclockwise.

Problem 9 Describe all three dimensional vector spaces V of C^{∞} complex valued functions on \mathbb{R} that are invariant under the operator of differentiation.

Problem 10 Let f be a continuous real valued function on $[0, \infty)$ such that $\lim_{x\to\infty} f(x)$ exists (finitely). Prove that f is uniformly continuous.

Problem 11 Let V be a finite dimensional vector space over a field \mathbf{F} , and let A and B be diagonalizable linear operators on V such that AB = BA. Prove that A and B are simultaneously diagonalizable, in other words, that there is a basis for V consisting of eigenvectors of both A and B.

Problem 12 Let $A = \{0\} \cup \{1/n \mid n \in \mathbb{Z}, n > 1\}$, and let \mathbb{D} be the open unit disc in the complex plane. Prove that every bounded holomorphic function on $\mathbb{D} \setminus A$ extends to a holomorphic function on \mathbb{D} .

Problem 13 Let **K** be the field $\mathbb{Q}(\sqrt[10]{2})$. Prove that **K** has degree 10 over \mathbb{Q} , and that the group of automorphisms of **K** has order 2.

Problem 14 Show that every infinite closed subset of \mathbb{R}^2 is the closure of a countable set.

Problem 15 Let A be an $n \times n$ complex matrix such that $\operatorname{tr} A^k = 0$ for $k = 1, \ldots, n$. Prove that A is nilpotent.

Problem 16 For 0 < a < b, evaluate the integral

$$I = \frac{1}{2\pi} \int_0^{2\pi} \frac{1}{|ae^{i\theta} - b|^4} d\theta \cdot$$

Problem 17 Show that a group G is isomorphic to a subgroup of the additive group of the rationals if and only if G is countable and every finite subset of G is contained in an infinite cyclic subgroup of G.

Problem 18 Let f and g be continuous real valued functions on \mathbb{R} such that $\lim_{|x|\to\infty} f(x) = 0$ and $\int_{-\infty}^{\infty} |g(x)| dx < \infty$. Define the function h on \mathbb{R} by

$$h(x) = \int_{-\infty}^{\infty} f(x - y)g(y)dy \,.$$

Prove that $\lim_{|x|\to\infty} h(x) = 0.$