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YOUR EXAM NUMBER
Please cross out this problem if you do not wish it graded

Problem 1A. Score:

Let a(n) be the number of ways that Harry Potter can buy a new broomstick valued at n
knuts using bronze knuts, silver sickles worth 29 knuts, and gold galleons worth 17 sickles.
Find

∑
n a(n)zn and limn→∞ a(n)/n2.

Solution: The sum is 1/(1 − z)(1 − z29)(1 − z17×29). The asymptotic behavior of a(n) is
dominated by the highest order pole of the partial fraction decomposition of this rational
function, which is the order 3 pole at z = 1. The leading term of the partial fraction
decomposition of this near z = 1 is 1/(17× 292× (1− z)3), and 1/(1− z)3 has the expansion
1+3z+6z2+10z3+· · · whose coefficients are triangular numbers (n+1)(n+2)/2 asymptotic
to n2/2. So the limit above is 1/(17× 292 × 2).



YOUR EXAM NUMBER
Please cross out this problem if you do not wish it graded

Problem 2A. Score:

Suppose that fn is a sequence of non-negative continuous functions on the unit interval.
Find counterexamples to three of the following four inequalities:

lim sup
n

∫ 1

0

fn(x)dx ≤
∫ 1

0

lim sup
n

fn(x)dx

lim sup
n

∫ 1

0

fn(x)dx ≥
∫ 1

0

lim sup
n

fn(x)dx

lim inf
n

∫ 1

0

fn(x)dx ≤
∫ 1

0

lim inf
n

fn(x)dx

lim inf
n

∫ 1

0

fn(x)dx ≥
∫ 1

0

lim inf
n

fn(x)dx

(The remaining inequality always holds; you do not need to prove this.)

Solution: For numbers 1 and 3 take a sequence of functions fn that have integral 1 but
vanish for x ≥ 1/n. For numbers 2 and 3 take fn(x) to be x for n even and 1− x for n odd.

(The remaining inequality holds by Fatous lemma.)



YOUR EXAM NUMBER
Please cross out this problem if you do not wish it graded

Problem 3A. Score:

Suppose that f is a twice-differentiable real-valued function on the real line such that |f(x)| ≤
1 and |f ′′(x)| ≤ 1 for all x. Find, with proof, a constant b such that |f ′(x)| < b for all x.

Solution: Suppose f ′(x) = M ≥ 0. Since |f ′′| ≤ 1, f ′ must be greater than a triangular
function with peak of height M and sides of slope ±1, which has total area M2. So f must
vary more than this, so M2 < 2 as f varies by at most 2. So b =

√
2 will do. (It is also clear

from the proof that this is best possible.)



YOUR EXAM NUMBER
Please cross out this problem if you do not wish it graded

Problem 4A. Score:

Let D be the set consisting of the open unit disk together with the point 1. Show that the
power series ∑

n>0

z3
n

/n− z2×3n/n

converges at all points of D. By examining points with argument of the form π/3k, show
that the function it converges to is not continuous.

Solution: Convergence on the open disk follows from the ratio test, and convergence at 1
follows from the alternating series test (and is trivial anyway). To show the function is not
continuous at 1, look at it on lines of argument π/3n. On these lines, apart from a few terms,
the absolute value of the function is bounded below by

∑
|z|3n/n which tends to infinity as

|z| tends to 1 by divergence of the harmonic series. So the function is unbounded in any
neighborhood of the point 1, so cannot be continuous there.



YOUR EXAM NUMBER
Please cross out this problem if you do not wish it graded

Problem 5A. Score:

(a) Suppose that P (z) = c(z − a1) · · · (z − an) is a complex polynomial. If z has positive
real part and all the roots ai have negative real part, show that P ′(z)/P (z) has positive real
part.
(b) Show that all the roots of the derivative P ′ of a complex polynomial lie in the convex
hull of the roots of P .

Solution: Part (a) follows by writing P ′/P =
∑

1/(z−ai) and observing that all the terms
in the sum have positive real part.

By part (a), if all roots of P have negative real part then so do all roots of its derivative.
By a linear change of variable, this shows that if all roots of P are on one side of some
straight line, then so are all roots of its derivative. This is another way of saying that all
roots of the derivative are in the convex hull of the roots of P .



YOUR EXAM NUMBER
Please cross out this problem if you do not wish it graded

Problem 6A. Score:

Find the order of the group of linear transformations preserving a non-degenerate skew-
symmetric bilinear form on a 4-dimensional vector space over the field with 3 elements, and
find the number of such forms.

Solution:
The order of the automorphism group is (34− 1)× 33× (32− 1)× 31 (number of nonzero

choices of vector times choices for vector having scalar product 1 with it times number of
choices of nonzero vectors with scalar product 0 with both of these times the number of
vectors having scalar product 0 with the first 3 vectors and 1 with the third). The general
linear group acts transitively on these sorts of forms. So the total number of such forms is
the order (34 − 1) × (34 − 3) × (34 − 32) × (34 − 33) of the general linear group divided by
the order above, which is (33 − 1)× 32 × (3− 1).



YOUR EXAM NUMBER
Please cross out this problem if you do not wish it graded

Problem 7A. Score:

Find a basis of the intersection of the subspace of R4 spanned by (1, 1, 0, 0), (0, 1, 1, 0),
(0, 0, 1, 1) and the subspace spanned by (1, 0, t, 0), (0, 1, 0, t), where t is given.

Solution:
The first subspace consists of the vectors (a, b, c, d) such that a− b+ c− d = 0, while the

second subspace consists of all vectors of the form (x, y, tx, ty).
The intersection is then the set of the vectors in the second subspace satisfying

(x−y)(1+ t) = 0. If t 6= −1, the intersection is one-dimensional and is spanned by (1, 1, t, t).
If t = −1, the intersection is the second subspace and (1, 0, t, 0), (0, 1, 0, t) is a basis.



YOUR EXAM NUMBER
Please cross out this problem if you do not wish it graded

Problem 8A. Score:

Let X be a totally ordered set, (i.e. equipped with a non-reflexive, transitive binary relation
< such that for every x 6= y, either x < y or y < x). Let L(X) denote the set of subsets
S ⊆ X with the property that for all y ∈ S and x < y, x ∈ S. Find, with proof:

(a) a countably infinite totally ordered set X for which L(X) has the smallest possible
cardinality;

(b) a countably infinite totally ordered set X for which L(X) has the largest possible
cardinality.

Solution:
(a) If X = Z is the set of integers with its usual ordering, then L(X) is countably infinite,

as every set S ∈ L(X) is either empty, equal to X, or has the form Sx = {y ∈ X | y ≤ x}.
This is the smallest possible cardinality, since for any X, the sets Sx are distinct and belong
to L(X), so L(X) is infinite.

(b) If X = Q is the set of rational numbers with its usual ordering, then L(X) has the
cardinality of the set R of real numbers. In fact, for every x ∈ R, the set S<x = {y ∈ X |
y < x} belongs to L(X) and these sets are distinct. This shows that |L(X)| ≥ |R|. On the
other hand, L(X) is a subset of the power set P (X), and |P (X)| = |R| for every countably
infinite set X. This shows both that |L(X)| = |R| in the case X = R, and that |R| is the
largest possible cardinality.



YOUR EXAM NUMBER
Please cross out this problem if you do not wish it graded

Problem 9A. Score:

(a) By counting the number of pairs (g, x) with g ∈ G, x ∈ X, g(x) = x, show that the
number of orbits of a finite group G acting on a finite set X is the average number of fixed
points of elements of the group.
(b) In how many ways (up to symmetries of the hexagon) can one color the vertices of a
regular hexagon using 4 colors?

Solution.
(a) We can assume there is just one orbit, so have to show that the total number of fixed

points of all elements of G is the order of G. This follows by summing the pairs (g, x) with
g(x) = x in two different ways. Looking at g the sum is the total number of fixed points of
all group elements, and looking at x shows that the sum is the number of elements in the
orbit times the order of the subgroup fixing a point, which is the order of G.

(b) We have the dihedral group of order 12 acting on a set with 46 points, and want to
know the number of orbits. The identity has 46 fixed points, rotations through ±60◦ have
4 fixed points each, through ±120◦ have 42 fixed points each, the rotation through 180◦ has
43 fixed points, three reflections about lines passing through the midpoints of opposite sides
have 43 fixed points each, and three reflactions about the lines passing through opposite
vertices have 44 fixed points each. Thus the number of orbits is:

46 + 2 · 4 + 2 · 42 + 43 + 3 · 43 + 3 · 44

12
=

1024 + 2 + 8 + 16 + 48 + 192

3
=

1290

3
= 430.
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GRADUATE PRELIMINARY EXAMINATION, Part B Fall Semester 2014

1. Please write your 1- or 2-digit exam number on this cover sheet and on all problem
sheets (even problems that you do not wish to be graded).

2. Indicate below which six problems you wish to have graded. Cross out solutions you
may have begun for the problems that you have not selected.

3. Extra sheets should be stapled to the appropriate problem at the upper right corner.
Do not put work for problem p on either side of the page for problem q if p 6= q.
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, , , , ,



YOUR EXAM NUMBER
Please cross out this problem if you do not wish it graded

Problem 1B. Score:

Using induction or otherwise, show that the polynomial Pn(x) = 1 + x1/1! + ...+ xn/n! has
exactly 1 real zero if n is odd and none if n is even.

Solution: Use induction on n. The derivative of Pn is Pn−1, so the number of zeros of Pn is
at most 1 more than that of Pn−1. This proves the result for n odd, as a polynomial of odd
degree has at least one zero. For n even, we have Pn(x) = Pn−1(x) +xn/n! ≥ Pn−1(x), so Pn

is positive at its unique minimum (where Pn−1(x) = 0), and therefore has no zeros.



YOUR EXAM NUMBER
Please cross out this problem if you do not wish it graded

Problem 2B. Score:

Either prove or describe a counterexample to the following statement: If a continuous real-
valued function on the plane is bounded on all straight lines then it is bounded.

Solution:
The statement is false. A counterexample is given by a function which is 0 except within

a distance 1 of the set of points (x, x2), where it has value x.



YOUR EXAM NUMBER
Please cross out this problem if you do not wish it graded

Problem 3B. Score:

Let f : [0, 1]×[0, 1]→ R be continuous and assume that for all x ∈ [0, 1] there is a unique yx
such that f(x, yx) = max{f(x, y); y ∈ [0, 1]}. Let g(x) = yx. Show that g : [0, 1] → [0, 1] is
continuous.

Solution:
If an converges to a and g(an) does not converge to g(a) then, since [0, 1] is compact, there

is a subsequence ani
such that g(ani

) converges to some b 6= g(a). So f(a, b) < f(a, g(a)).
But for i large enough f(ani

, g(ani
)) is close to f(a, b) while f(ani

, g(a)) is close to f(a, g(a)).
So for i large enough f(ani

, g(ani
)) < f(ani

, g(a)). Contradiction.



YOUR EXAM NUMBER
Please cross out this problem if you do not wish it graded

Problem 4B. Score:

Find four power series f1, f2, f3, f4 with radius of convergence 1 such that f1, f2 converge at 1
but f3, f4 do not, and the functions given by f1, f3 can be extended to functions holomorphic
in a neighborhood of 1, but the functions given by f2, f4 cannot be.

Solution:
f1(z) = z − z2/2 + z3/3− · · · = log(1 + z)

(Alternating series test)

f2(z) = z/12 + z2/22 + z3/32 + · · ·

(Integral test; derivative unbounded near z = 1 by divergence of harmonic series.) Or use
(1− z) log(1− z) = −z +

∑
n>1 z

n/(n− 1)n.

f3(z) = 1− z + z2 − · · · = 1/(1 + z)

(Terms do not tend to 0)

f4(z) = z + z2/2 + z3/3 + · · · = − log(1− z)

(Harmonic series diverges)



YOUR EXAM NUMBER
Please cross out this problem if you do not wish it graded

Problem 5B. Score:

Let f be a doubly-periodic meromorphic function: f(z + 1) = f(z) = f(z + i) for all z ∈ C.
Let za be the zeroes of f inside the unit square 0 < Rez, Imz < 1, wb be its poles inside the
square, and ka and lb be respective multiplicities. Assuming that f has no zeroes or poles
on the boundary of the square, prove that∑

a

kaza −
∑
b

lbwb ∈ Z[i],

that is, is a Gaussian integer. Hint: Show that the following integral along the boundary of
the square is a Gaussian integer:

1

2πi

∮
z
f ′(z)

f(z)
dz.

Solution:
Due to periodicity, the integrals over the left and right edges add up to (2πi)−1

∫ i

0
f ′(1 +

t)/f(1 + t)dt = (2πi)−1[log f(1 + i)− log f(1)] ∈ Z (since branches of the logarithm differ by
integer multiples of 2πi. Similarly, the integrals over the top and bottom edges add up to
an imaginary integer. On the other hand, zf ′/f has first order poles at za and wb with the
residues zaka and −wblb respectively. By the residue theorem, the contour integral is equal
to their sum.



YOUR EXAM NUMBER
Please cross out this problem if you do not wish it graded

Problem 6B. Score:

Show that there is a sequence of 4× 4 matrices A(n) with real entries, which converges to

A =


0 0 0 0
0 0 0 1
0 1 0 0
1 0 0 0


and such that A(n) has 4 distinct real eigenvalues, two of which are positive and two negative.

Solution:
Let D(n) be a diagonal matrix diag(1/n, 2/n,−1/n,−2/n). Then computing the charac-

teristic polynomial shows that A+D(n) has eigenvalues 1/n, 2/n,−1/n,−2/n and converges
to A as n→∞.



YOUR EXAM NUMBER
Please cross out this problem if you do not wish it graded

Problem 7B. Score:

Let n be a fixed positive integer, and define two n by n real symmetric matrices A and B
to be equivalent if there is a non-singular real matrix C with CACT = B (where CT is the
transpose of C). How many equivalence classes are there?

Solution: This is asking for a classification of symmetric bilinear forms over the reals. By
Sylvesters law of inertia these correspond to diagonal matrices with entries −1, 0, and 1
(with order not counting). So the number of equivalence classes is the number of solutions
to a+ b+ c = n in non-negative integers a, b, c, which is (n+ 1)(n+ 2)/2.



YOUR EXAM NUMBER
Please cross out this problem if you do not wish it graded

Problem 8B. Score:

Determine, up to isomorphism, all finite groups G such that G has exactly three conjugacy
classes.

Solution:
Let g = |G|. One of the conjugacy classes is {1}. Let r and s be the sizes of the other two.

If g is odd, then, since r and s divide g, we have r, s ≤ g/3, hence g = r+ s+ 1 ≤ 2g/3 + 1,
which implies g ≤ 3. In this case we must therefore have g = 3, so G is the cyclic group
of order 3, which (being abelian) has exactly three conjugacy classes. Otherwise, g is even,
and r, s ≤ g/2. If r and s are both less than g/2, then r, s ≤ g/2 − 1, which contradicts
g = r + s + 1. So one of r and s, say s, is equal to g/2. Then we have g = 2r + 2. Since r
divides g, this implies r divides 2, that is, r = 1 or r = 2. If r = 1, then g = 4. But then G is
abelian and has four conjugacy classes. Hence r = 2, and G must be a group of order 6 with
conjugacy classes of sizes 1, 2 and 3. Up to isomorphism, the unique non-abelian group of
order 6 is the symmetric group S3 (isomorphic to the dihedral group of order 6), which does
in fact have three conjugacy classes of these sizes. So the groups are: (i) the cyclic group of
order 3, and (ii) the symmetric group S3 on 3 letters.
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Please cross out this problem if you do not wish it graded

Problem 9B. Score:

How many roots does the polynomial x100000−1 have in the finite field F65537? (65537 = 216+1
is a prime.)

Solution. The roots all have multiplicity 1 as the polynomial is coprime to its derivative.
We are looking for the number of units x in F65537 whose order divides 100000. Since

65537 is prime, the group F×65537 is cyclic of order 216. Thus the order of x, which is a power
of 2 not exceeding the 16th, must be a divisor of 100000 = 25 · 55. Thus the roots are those
elements x which satisfy x2

5
= 1. In the cyclic group of order 216, there are 25 = 32 such

elements.


