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Let % e(0,0) e adoitrary , and choose a< x. We il shou

g Converges un;%rm\y on La,00) | and &ince each Gn 15 Conkinuous
on Lay0) os well ) g will be the uniYorm Jink o Continunos
Fonckions and thus Continuous iEsel P,
We can vze the M-test. Since X>q,

| Aeis) € [ ee] €1l = 21l

)

— 14t 4 s
whate 22 @ e 2w LOR
N=1\

S6 8 Con\/efges Mhi?orm\y on {0,00),



C\Qi(‘ﬂ‘, 3 1S &i??e(‘emﬁo\o\e on (O\OQ)

I;j 8‘(30 exists, e have

3‘ )= ).' A (><~o§‘ ( 3(><)~ 3(&\)

a—> X

= i (x=a) ﬁ) — v (X=c)
(b)) (nZa)

n=

o0

:m? o
“ OB (ne)

n=

=) (—Y\2>/(\+v?><)2 )

Which exisks becavse it Converges umjr\orm\y on La, 0o), S

;Diz\i =l e ] =M,
(+&x) (\(\ZX)Z a av

whare ZM,\:Z?‘?W :J&ZZ%Z <Oo,

60 8 VS COnJCIY\UoUS\y &W@V@,{\Jciq\o\e on (O)\)Qv, N




Cloun . e —>0 on [0, b )

Note Bhat o= I=nx = =0 i v="n  and
Q)"

\ \
he 007 T4xany and i, GR) <O |
N

\
SO0 Y¥=wn iS a 3\0\00\\ MOXIMOM AN Jdnus

Vs Thaoo] € Thald)=

- l < | ?or\ﬂ>}

Vi

O+w)

8o Bup \ Vo) \h( Ln)~§o) Thes Wadlya—0
Xelowe)

ond Pa—>0 bmi?ovmly.

Lt oot Z\ﬁ (50 —Z X3
Demon%b‘o\\&y \ \!\( O>:O ) and &\:or o) QiXec; X we »\O\VC

oo = 2 X0 (/«x) Z (/+><>

:—X__(_,_l\_> S\nte Y30 =
e\ )= (M) V)<L

=1 -



LL\ Ilt Con mt Conve\Bc unf?orm\y on Lo, vo) ) obhenise N would boe

JC\/UL un: Yorm \im(JD o$ continvous &;u\vxécioms)\ou£ \/\ 1S d\ISCOI’)JL,\'V\UO()S.

. 3 )
(\+><\)n tZ(an 2) raxans
by o

X>x>0, %0 Fos&%va terms,

(_\;—S(\m\ I+ nan cf\
Oo ek My= \/om? )‘E\(\an 2. Mol =2\, Lo

L

)\/‘\n&x)\ =

|~
|~

; \
\ N
FNY + N X




/ack

Cmrza

(D Supoote E s bounded , 0 diam BV M Lot some, B
M. T, pocticular, ¥ Qi€E s an interval, Phr
QM. ek €90, and dmze {5 ZE st

Poc cacn i, QL) Yo e
Then ket Li= Q7 \We Prun have
L 218 -al=o-al -loval =)Qi|- bl
“lal-2M
£ (&5™M)ZM
=g/

L) & e - &, and KL:@_&F—Q . 8o

=1

So

gk

n«(E) <& —0.
Claitn - T effices fo consider the Voounded case.
PE TE E is vob oonded | consider o= E o B,
Then o 15 boonded oy 1), and sinee Py CE=m,(R)emil )0

\07 wba&l{%}v{{y) W\QE” =0 \O\/ Phe oomded cse.



(Ve)

Dot Paen Ez“&__)\ m;&E> m(k&)\ >5ZW\>&QF;B:O
\O\/ Countable SJ\OQA&'JC\'V(E);, 2

2D Note
R E\t E\\Eg L E\ Nk, Al i, ot unions, so
we Can g;reey qﬂ)/
2y k= Ez\ E\ L | E\ N E, WMeosures ond  Lse

. COU\Y\Jm\o\e, additivit y
5 EaB=ENE U ENE,

» EUE=(EasE)UlE nE,)
L —*

o
B+ m(Es) = ml ENEL) »n(E, N E,) oy (1), (2)
n(ENED)+m(E, 0 Eo) §
= mlEa 8l 0B)s mlE 0 B 7
= (B UE)*mlENE), (k)




5@) bu\)gose m(N)=m(R) oo,
3\'(\(,@ AQEE% )we\(\we E\/‘\C;B\/S\,Mowwer)
B= ALIBA) =2 ml(®)=mlA) +m (BAA)

= m(B)-m (N =m(B\A)
(Since (RO )

> n(B\A)=0
(Since )= m(A) >

So m,&E\A\zO \07 Sa\oqéé%{\/.{y.
Buot Ban

E_‘ A L (E\ A»l Whare A 'S Yieasurable \oy
abﬁumplt(on and  ENA i an
outer wgasue O sek and Hhws
MLaSUCaoe

S0 B s quum\o\e) an &

M E) =l A ¥ i (B\A)

= m(A\) + O
= () =mN)=m(R) <0,



o) Taat oM EN <12)) s ki
- A= (-0, 0)
’ E - AU(N"":L\ ) NMQ NJS ?él'\i Yion - W\Q,C«b\)\fq\Oe, 5€,JC and
N+ 1= EX{U X¢ /\/% IS Non-Measuraole
) B: }P\ \D?) Yo same arguwxu\{ Used tor N.
C\a'\m o.
Sowo‘s\wg ijc were, note jE\r\o\JE A 1S measum\o\e)

[T

'S ot Weasuraole .

Omé CO\M\JCO\\O\Q '\Y\E@(\Se chions og) W\m%kkvq\o\e %ejcs ace

W\laﬁ\)\ro\\o\e) S0
A A (AU = AL
mnust \@e Y\(\eqs\xm\o\e. %

AV\ Lejt A\%\Qe WQH(@A ond &Qme

Fo=tve R ol - AN
3R | Aisux,mwg R
(An& QR_’V R
£ F—”M(EQ



Noke that E.=A, 80 FOzu (A, and since B is compack

and thosbanded, e s some £= T s thak B EL

S0 ¥ waps Lo T o Lt w®) o] For some
Clam " ¥ s ks and Sor )l ke[0T ] B s T ACELEB 0

eath EJC S Compchc.
Noke Hhat F this is Leve, we can Fiest apply the

inkermediate Valve Jc\lmorem JCo Q{né a T\ Sucn JC\(\QJE
PITY - m®), tuen reskrick § 4 wap 10,7

JLo ):(Y\KA\)\W\(BQ \’\/6 Can aﬂ)\\/ i‘k O«ﬁa{n J\:o Pu\\ \oac\( any
celn,m®)] 4o ot sakslim = FO=W(ED,

Anidn case ACELEB and wlhE = uE D ul®) a5 desited.

’ gj s chs,, We ' Show that e 2‘5.&4 )l'm;j( );’m p(%;) exists and

t. ot

15 eq/uq\ JCo p(JCB\ US\'ng Jd/\z gacJC H/\a‘t atho = ch—Eb.
IQ JCL/V{:, £\/\Lﬂ E{—_\ EE{_Q&--- = E{._) ancl QN EJCi=E, S0




\07 Conjr,inui{:, o$ meaosure ‘P(‘om \06\000, We »\a\w, )_u'm ,{A(EJC,):/M (E\), 30

>

Jim ‘(r\(JC;B = ]_.‘m ,(A(EJCJ:/M(EJ = WC(“:\\

i—"'\: >

SI'KY\iJO\fty, \g} {;\x{ \ V\.ojcinj {\r\a{ ‘t\éT‘ = ‘E,‘—Tl ="M(E{|\5M(B\)<OO,
and EL2E. 2 -2 E, so

we Can QPP\)’ Con‘é:'nui%/v o@ YeaSure Qrovn a\OO\/e, J(_o O\OJCC(\Y\

‘_\'m ?(JC.\ = )im M(E{,\)\é M(E{>:Q('E3

+. -t >

So WG is cts. ®
°. EJC iS COmPac(-'.

5\'00@ EJC <R which is Compacjc qncl 'HI\US \oouncl(ul, it Su?$iceb ‘Eo b\/\ow {i\nqjc
E i dosed. But lebbing N3 xeR | distle) <68 | we hase
EJC: /\/Jcﬂ B ‘ b\)\r\mfe, N{: is open \Dec(zuz NJC: U %X(—-Wv\\\ A\'S{(X\Q\Q&J ) OW\J

acA |
Open \oa\\ around a
Nt C—-’«% = NtﬁB 15 SJ\:'\\\ open. BU‘E E\M. c\osu(e o$ an>/ o[xn &Jc 1S c\oSeA. N

L0, T2 ACELR

Eo=A ol bes= Eeeb, o ASEC Dedl 4.

Bok EaNonB BB sice Bis closed, 50 Ex B Yordll £ scndl ®



6“\ Reca\\m JE\r\th N s consbrudked by Considerin R”[O\l\
: ! > ® alo,1)

ond Jca\img emaHy one elevant Trom eadh eguivalence class| e can vote

JC\/\QJQ \'\; E E)\/ \ JC\/ULV\ E Conjca;ns a Chove OS at WloS{: One

e\eﬂ\eﬂjc Q(\O{Y\ eqc\r\ €%l’Vq\enCe closs . \f\f@ Can JCLW\ 7é0\'<€ a 5/'m;'{o\r
enumacabion Q0115398 and dfie Ey = Evg
Twen ESA =L E cUM <1,2])) ad sine
3eN AeN
E 15 weosurade, we mosk \awe

Wl E) =l E) = 2l E) -2 u(E) 23

4eN Je jeN
which can on\y \no\J \'&: W\(E\fo. O

50)  Suppose a(TMWIKL, 20 mlTV) =128 R
Some €50, Trun Choode an Open G2 I\/\/ Such
thot w (&= (TN = 1-€. Then INGEN



a0d o0 Yoy (1) we musk Ve m(ING)=0. Buk thes
L=GCLUTNG = 4 (D= O+ u(T\6)
= 1 = )¢ <1 g4 conteddion. O
5¢) Lek
E =N
E. =T\ N
bt my (ED)=me NSO obrarise N wodd \oe

= 1=F UF

measurade  so B UF,) =1 bt
B+ ED= 1+ € for someeso. W
(o) Clam. E 6 a countade union of a cambade inkersedion o muasurabe
dets. and thes mussirede.
FProot © Weike  E=1x|xe By o ibintely man 3% Bue lam 1o Hht
E-NUE;.

. EEO g Ej SU()PoSe K 1S i{\%mjce,)l Many Ej —]_\(\Ln Qor om7 p{xeé
,5——\

K\ jc\mue \S Somg ME K sudn JC\\ork Xe Ey\ E’E")‘“ ES ‘.‘—%k. BUJ(, Jc\n'lsx\awms S’or every ]<,



0
0 XGQSK. o

. EESQE)A E’J %\)ﬂ)o& XegE R;Of exfevj K T\Mn i? X Wefe in On\y Qn’.{:e\/

Many Ej\ we could \Di(,k ) ma%\mq‘ EN\ Sodn ‘k\\a{ KM= xe E\(\ and S0

0
K& 'UM Ei = & Conbradickion, 1
A=

(/\o(\m m (E\):O

\/\{e/” Use JC\M Qacjc JC\/MJC Z_. On {00 =iy Z..%a =0 ie the Lails

]-V(k nN= 5

O&; a Con\le(%enjc Sum YY\US% \0€Corﬂc ar\oijtraﬁ\y Sh’m{ I

Sm& E mUE E 6 E S*\or a\l \< 5 YV\(E)éSZ_? EQ‘J’OJ

k=1 K =k

Sjorcmfg mB)=0, ™

Ob) Fix x and lek Eoy =3 xeR | k=% 14%48
Omé EJ U

P copr
to

M(EP\QS /53 and thus M(Epﬁ‘b(z/j'"’)zz/jz.

— )
ml;: S é__jl E T QV\A Sirce EF‘J 9(\5(\/'33)‘)/0 ,

Dot thun ]_Z M(E5>éfz/jz < 00, Moreo\/er,
=\ 7=



E: Dg_)\( EJ: %Xé R) JC\/\Ut \tJ '\mt:m{:e\\/ W\an7 j‘s Such JCW[’. {Z\Mfe
exists  a P Co‘Dﬂ'mz'l:o '35.15. \X—%‘)S ‘/f‘})

s

b\)\(\ic\n S Pl‘ec{x\y the ek e want. 60 \97 (\3) Y\/\(E\:O, ]



Analysis  HW 3
Y\a>/5| chK G‘O\rzq
I‘P YY\*(E)) ‘tq\(b B= )R?, ojc\/l!bru)\'Se SuePose mx(E><OQ ancl ’e{ > 0. C\F\OOSC {&&_:’7E
J(,\/\lm Anoose open {LL( st Qiclc and )L.' <(YY\*(E)+ 6)/ZL.
T hen degine L(Q= Q‘LL ') Hun L@ is open (o\nc\ £hos Bore\) and

m(L©)=m, (L) éZ IL] < ma(B)+ € .
50 ‘Eake ‘Um Setbum(,e 5\<'—l/K—5 0] ) ’HMY\ '€£ Lh: Q L‘/k' \/\/e )'\O\V(’. L_KH < LK VK)
and M( Ll) LMy (E)“'\ < 0S, %o lj\ E and \07 Lpper Con{:inu\'{:y oQ weasuce ,

o n

ﬂ L) (ﬂ L/K)-\\m m ‘/k>-\|m ms(E) + Vk ‘mak(E\)

= K=y K->t

50 take B=QL %
@ Let €50, since Fel Rn>, Brore exists o cloed set K, st m(ENK)<e, LE
m(E)<00, thn m(Ke)= mIE)-€, so faketh segune €=V and lek
Kn:QK\/L Hea K ¢ KM\ V¢ and K“/E) So \07 cOnb'nuingoQ Measufe $rom below,

& qn

m(OK)=lim mK)=lim mE)- % = mlE)

n=\ n—=>00 n-S>00 ‘

50 take|B=U K, bhich s o counbeble union oF closedseks and thus B
IE w00, let Eq=EnB(n,0). Tha 3Balby the bomded cose) such that
BrSEn is cdosed ond m(BD= m(E,). Bot E,7E | s0

EY=m(J E, )= fin m(E)= Jin (B mi B,

n->00 NS0

%o take %:ggn ] wWhich is bore| Since each 3y is. %

@ Smcx, YY\ (B)= mx(E> choose 3@1 =k C\osaé cwbes  Such JC\nc\JC Z]@ )<m(E) 8/2
Since Z\)Q \ Converges | Clieose N such hdb Z)Q | <&/2 | and \e{: A= U Qi [Then,

Eah-( E\QQ;BU(U@.—\D
(B W

-
2 U@ U(UQ \E)
=>m(E4A E m(Ja) + (m(ua) m(E>> £ /3 + ((mE)+#) - m(E)) =€,




Choose  an open set O E st me(0) <(M-e) me(E) | s0that (-£)m, (O) <my(E).
Then wrike O: Lf Qi with eadn @; a closed cube | thun tou/oards a contradiction

Suppose thak M(E N Q) < (=-m (@) Yi. Thun v\)njcmg E= U(EHQB we nave

ml(E) = Z‘m(En@>< Lm G-oaml@) = \a\MU@) =(1-OYm(0)< m(E) #

%0 wWe Must Nawe mKEﬂ@j\é(\-cﬂ\m(@j) Tor SO(Y\?/j. B
Let €50 be atoibrary, and by @ chose Q sunthat m(En6)20-0m (@)
Than ekt Ec=ENQSE | » E,-E,SE-E, and Supposing towards a  contrdiction
that Eo-Eo conbains no ball aromd O chaose d<< 1 such that d& Eo~FE., and
this EnEord=g. Also dwose d small enogn thakt  ml@uerd) <m(a)+e
Thn EoUE,+d =E.LJE,+d | so m(E, UE,+d)=2m(E) 2 20-£)m(Q)

Since Eo UE,+d CQUQA+, we ol have m(E,DE+d) < m(@Q)+E,
Bot  then

20-Ym (@) ¢ m(Eo UE,+d) £ m(@)+€
and JCq\iing E20  yields 2@ <m(@). X
S E.-E, < E-E most contain an open ball around 0.

@ F;X X and let L= \.m5u(> 1C( y=lim Sup Q() T hen considec 5,,( %XQRH-\OOLO&

bande 9~0 yeBsta

we will Show eVer/ xeﬁd as a Yoall Bg(ﬂ —Si, YV\akinj Sax open and Since o is qr\o[‘{:f?ar)()
this will Show ¥ is Bor) measumble. Let xeDu, 0 Ty <ot Then since T is Upper -

semicks, pick S st yeBg(ﬂ:‘r S‘?(\/ys\?(x) Ruk then 76850&\:” ‘\'\(y\é?(x)QX =‘rye§,<,
0 Bs) €O« as dsired. [

(@44

B 33xeR| lim S0 exists§ 27 BF S, which is vhot well shouw. Noting tht
i§ we et Foos lim sop £.60 , Go= ’i(f; &19 £ 60, Hhen
3%3x%) Foo > & o
—U %) F(x3>q)>6(x\§
U (ix]):(x)‘»q}) NAx) 6(x»<<b.g



= U (M%ONTJ\ u\)\r\are eqc\w M‘{)’N‘D 1S Wasurq\o\e) Jc\\us W‘Q\(inj SC 6 Counkabe union 0\}
1e@

Measureole Sets & thos weasurgbole. (Eﬁ.) M?) is  Weasurable emdc\y \e cavse i? ?\T\Y}S afe
measuradle ;b lim sop By 1= F is wieasurble, as Srewn in Class. )

N -0

. "'\\S well - dfined  becave each Xe C Vs« um_ucbgg, f&mm\/ eXPan5|on Which contains o

S

1, aod ¥ is cks 05 we can weike 9o = (") (z) y 50 §- Z‘g,\ , whare we hove

Cts
)3"00) e VO™ is Summiable, so ¥} is lmi'(:orm\)/ cts by fhe, M—tesh. M(’)reover)
(0),= (0)2=(0.000- Y K (6,600 Yy = (0)g . s0 $(0V=0 and
(D= (0.222-)5 s (0111 )= (1), | 50 POD=).

'P —>> [O,l‘_l) So Cons, der Q_\()\/> ‘;OFN the non-measurable Set. an(.e. ths isa
-1 £
bk of a Measure Zew sek | ik is Meosumdle | and so § ()\f\) N
LN ,

I
Muzasveole cts ot Megwiable

-
€ Since ¥ is do | conskant fus are ds, and T & a piecewic combimbion & cfs s that ogee
on intersections, F is cbs. Constant Pos are mnckueqs\ng, so it on / emains Lo shaw ©is
non decreasing on C. Leb x= Zan 3, y=2 b 2, and x5y Thin thete is some minimal N
suoh that  ap=by YV KEN and ad by Then Fa>2hy , and Zag=2o Y KN, which
means that 60> +iy) Since
Poo-Popy= 5 e BT Hawron )2 1357607 > 3lain)Z” 0.

n=\

@ Oince FO and XX are conkinvous ond Nondecreasing , and in Yok XX s Steidly increasing,
G is contines and skriclly increosing & thos injeckive. To see that G is surjeckive
that GO0 and G2, s0 this Tolloas From the TVT.

O Lot T e ome b iokendls n €, Hun xyeT = F(x\—Fm wnd S GU-Gd=brasm(D),

Then m(T)=m(6D) since G iscks | and 50 (6= w6 LI TL)) =m(UL) = 1,
(GO =m (102N G(E)) =2-1=],

We have K= L_J(/\{Hf) s G(O)= U(G(Oﬂ)\/+%> S0 M(C(C)) Z(G’(Oﬂ)\H% )

1@ PR o
0< 1= m(C(C» Z (G(Oﬂ)\ﬁb )

, we )SUSJC note



Nok every ten can hove my(E)=0, so 2ome Ei has mEDNYO. Bk then B¢ can ok \uc

be weasumble | since i+ we leb Ei= GONNg,; | then X,y e B x-yeR\G,

so E-E; cont conein any boll awund 2o and thus B cant e Lebesgue measurade by (2%).
Sine EiSG0)is o nonmeasitigble %k, were done.

Let ACSE bhan A= GO N Ao, Sor soma 1, 50 G NS C and m(€)=0  imples
G'(N') is measumble and m(G'N))=0. But ewry chs Lonckion is Porel Weasvrols , and
since. G(G' N =N is ot Borel, it con nok pl Yoack o a Borel sck.

As shoun above, Ei s vok muswrade and G'(E) s i, 5o take =X\ .. Then

Su= )\Xe[O ﬂ( @y>ec§ - f G(E), Otacl % \ooth of which ate nessuradle, so @7V,
10,1] =0
g ,  else
BUJ\Z por o(“ 5 {Xe[o 2—” (o G >'\7'_2)=%Xe[0,2]\ 6‘_|(X)6 GI(E;%:E; E[)/}z.



Ana\yéis Hw #4
~ack Garza

Q) Let Fi be the ¥o|\oWinj ?uncé/on .

7/ N

l__ /Qf
+ % — X
K K+ /5% ke V¥

, K
N ote JC\r\chK é:\nis )/(e\ds a J(r;qng\e ot area zoh=B(kae-K)1 = 2 , So e have
+2K+\ 3 N
fh‘i ?k = ‘YK $K =2 k_ Moreover) K=\=j=$’ [K, K*\/z\d'] ﬂ[:\ ,d+‘/zj+|] =8, 50 let 3\1:{2’3 'PK and

%N=§ %‘\K. TVun SM/Iﬂ) 50 we coan qu\y the MCT 4o obtain

9= it
N & X
g <l e g = S g L@JRKZ:OQKTL@@Q& m g2 =1
Howe\!er, l).(w;%;)g 3(X):1>O, So 'X:anﬂ(x)#O. @

“o) Towards a Contradiction, Su pp ose Pl s un.‘?ormly ks and l);(«gso:}o Lor= €5 0. Chnose
a sequance o800 such that For all i3 we e [xixgl> L. Then, or any §<L and any 31,
we have  BioaN B gy = 2. Now \o/v uniForm COnJc;mifc/ of £ choose S such that <L and

ye B 00 = Hoo-Fipl< € \/x,ycH?).J
Now let n Ve Fixed, and consider some xeBg (%,). We have  [Foo-Fowy | <€ noke thet H}(Xn)\>O
For al 0 large enough; othecuise the limsup would be zero. Tt also must e bhe cose that  |Fo0>6
otherwise  1fwal<E ﬁ/l?rx“»\—l$cx3|\>]o—a <€ | o

£ < ll?(m\ - fool 5\¥(xn\—¥(x)’ g X

So I?(X)bi. Bu‘t ‘H/Lm

[18]2[ ¢ =& m(Bson) - £-25,

Bs(x.) Bs(x.)



omzl S0 \S; we \eJC

we,»\we - "
[>T I01 =20 [ IR1e 2725 — 0o,

COnJcraJ;ch;ng Fel

2@} [et X3 »(eRnH?(x\\%Qi\ Bun X0 X =4 and RVLXUXC, ©
fRi=fmaf 0 - oomba) + fcm ¢ oo

Since T e L bot & mX)>0 Hrs #e\Js & Contradiction . Do we musk have m(X)= 0. Z|
76) Welll v the Fuck that A<B ond [FIco0 [ 161-,161= [ 6], Nokio that

frs(fm)-e <= [ w-lm <o = [mce,

we wil) ()rocluoe an E st EC So&bg\cs ‘ams ConcH:lon \/\] te R - L\muo B(K O) the n- ]qu
of radios K centered ot DeR. Oince the mag> (A '—VJH'\\B s a measue, & eatisties
Con‘tmmjcy S:rov\(\ \)e ow‘ané Since B K,O / IR y We »\qve ]nm f \‘\Fl f H?I

o)
Sm(,e this limit eXiSJCS, le{: >0 and dnoose )\l Sutl(\‘é)nq{: .
(191-0191 <& = o> [IF1-[151=[1F1
so E:= B(N)(‘S) 5016{610’(65‘5./&/ desited \')(b?ef%)(.

RN
SN
L\\ N
A\,

@ We want o Sow  a TE A«\? C, where
o) f? e

b) ZZKm(E,J<OO, EK=%XI?(X) >2K€
) DR oo, Feix] 2°<Pooc™]

Note '(:\'\OC& F; n F\,):Q/ \"; L#S , ond FK = EK\EKH



(b) i§F ©. We hae

;ZKM(FK)=;ZK[M(EK)‘ m (B )] Might need to use
22 nE) - 22 m(E) dozcluke convergence
-2 2 m(E) 222 m(E) o Hee st For
=22 mlE) 522 m(E Bis to work.
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1 Problem 1

We first make the following claim:

oo 0
S::ZZajk:sup{ Z a;r > B C N?, \B]<oo}
j=1k=1

(j,k)eB

T::ZZakj:sup{ Z aj; > C C N2, ]B|<oo}.
(

k=1j=1 j.k)eC
It suffices to show the first equality holds, as the other case will follow similarly. Let S =
721 2k ajk and S" = sup {Z(j’k)eB a;r > BCN? |B| < oo}.

Then consider any bounded set B C N2, s0 B C {1,--- ,n1} x {1,--- ,na} for some n1,ny € N. We
then have



ni n9 o o0
D_ak Sy > k<Y D a
B i—1 k=1 =1 k=1

1
j=1

where the first equality holds a 4+ jk > 0 for all j, k, so the sum can only increase if we add more
terms. But this holds for every B and thus holds if we take the supremum over all of them, so
S’ <8S.

To see that S < S’, we can just note that

J—00

J K
S = lim Z(K@ Zajk>

j=1 k=1
J K
= lim lim a;
J%ooK%m;’;l ik

< lim lim §’
J—00 K—00

-9

where the limits commute with finite sums, and we the sum can be replaced with S’ because the
set {1,--- , K} x{1,---J} is one of the finite sets over which the supremum is taken. Moreover, S’
is a number that doesn’t depend on J, K, yielding the final equality. [

We will show that S =T by showing that S <T and T < S.
Let B C N2 be finite, so B C [0, 1] x [0, J] C N2
Now letting R > max(I, J), we can define C = [0, R]?, which satisfies B C C C N? and |C| < oo.
Moreover, since a; > 0 for all pairs (j, k), we have the following inequality:
d>ooak< Y ak< > ap<T,
(4.k)eB (k,g)eC (k.g)eC
since T is a supremum over all such sets C', and the terms of any finite sum can be rearranged.

But since this holds for every B, we this inequality also holds for the supremum of the smaller term
by order-limit laws, and so

S = sup Z ajr, <T.
B (hjeB

(Use epsilon-delta argument)

An identical argument shows that T' < S, yielding the desired equality. [



2 Problem 2

We want to show the following equality:

/Olg(a:) dm:/olf(a:) dz

To that end, we can rewrite this using the integral definition of g(z):

/Ol/xlfl(tt)dtdmzfolf(w)da:

Note that if we can switch the order of integration, we would have

/()l/xlff)dtdx:?/nl/ot‘@ du dt
:/Olff)/ot da dt
:/Olff)(t—c))dt
—/Olf(t)dt

which is what we wanted to show, and so we are simply left with the task of showing that this is
switch of integrals is justified.

To this end, define

F:R> >R
b t .

where A = {(z,t) CR? 50 <z <t <1} and f(z,t) := f(t) is the cylinder on f.

This defines a measurable function on R?, since characteristic functions are measurable, the cylinder
over a measurable function is measurable, and products/quotients of measurable functions are
measurable.

In particular, |F'| is measurable and non-negative, and so we can apply Tonelli to |F'|. This allows
us to write

dzx dt

t

1 t| t
7d1: dt sincet >0

’/ dx dt
0

fF@)] < o0,

f@®) ‘

JRLEE
R2

[ay



where the switch is justified by Tonelli and the last inequality holds because f was assumed to be
measurable.

Since this shows that F' € L'(R?), and we can thus apply Fubini to F to justify the initial switch.
O

3 Problem 3

Let A= {0 <z <y} CR? and define

L1/3

flz,y) = REEDLE
F(z,y) = xa(z,y)f(z,y).

Note that F' Then, if all iterated integrals exist and a switch of integration order is justified, we
would have

F:?/ / f(z,y) dz dy
R2 0 Y
0o oo .CC1/3
- T ayd
) ooy W
1

:2/ S
R 22/3y/1 + 22

1 1 o0 1
7dx+2/ — dx
/0 x2/3y/1 + 22 1 x2/3y/1 + 22

1 0
< [ [Ta
—Jo 0

o +2(2) <o

where the first term in the split integral is bounded by using the fact that V1 + 22 > Va2 = x,
and the second term from z >1 — >0 — 1+ 22 > /1.

Since F' is non-negative, we have |F| = F, and so the above computation would imply that F' €
L'(R?). It thus remains to show that [ F is equal to its iterated integrals, and that the switch of
integration order is justified

Since F is non-negative, Tonelli can be applied directly if F is measurable in R?. But f is measurable
on A, since it is continuous at almost every point in A, and x4 is measurable, so F' is a product of
measurable functions and thus measurable.

4 Problem 4

4.1 Part (a)
For any z € R", let A, = AN\(x — B).



We can then write A; := A(\(t — B) and As := A(\(s — B), and thus

9(t) — g(s) = m(Ar) — m(A,)
= [ xa@ do= [ () do

= [ @) = xa () do
R

:/ X (2) = X, (t — s + 2) da
Rn
(

sincex€s—B < s—zr€B < t—(s—x)et—DB),

and thus by continuity in L', we have

90 =9 < [ Pa(e) = xalt=s+a) dz >0 as 1

which means g is continuous.

To see that [ g = m(A)m(B), if an interchange of integrals is justified, we can write

o g(t) dt = /n/nXAt(iL') dx dt

xa(z)xi—p(x,t) do dt

xa(@)xt—p(z,t) do dt

I
e T
e

xa(x) xp(t —x) dz dt

sincex €t— B < t—x € B)
— [ [ xal@) xa(t - 2) dt dx
n R'ﬂ
= [ xa@) [ xalt—a) dt dx
R™ R
- /R xa(x) m(B) dt
(by translation invariance of Lebesgue integral)
= m(B)/ XA dt
Rn
=m(B)m(A).

To see that this is justified, we note that that the map F(x,t) = xa(x) xp(x — t) is non-negative,
and we claim is measurable in R?".

o The first component is x 4(z), which is measurable on R", and thus the cylinder over it will
be measurable on R?",



o The second component involves xp(t — x), which is xp(z) composed with a reflection (which
is still measurable) followed by a translation (which is again still measurable).
e Thus, as a product of two measurable functions, the integrand is measurable.

So Tonelli applies to | F|, and thus [ |F| = m(A)m(B) < oo since A, B were assumed to be bounded.
But then F' is integrable by Fubini, and the claimed equality holds.

4.2 Part (b)

Supposing that m(A), m(B) > 0, we have [ g(t) dt > 0, using the fact that [g =0a.e. < ¢g=0
a.e., we can conclude that if 7' = {t > g(¢) # 0}, then m(T) > 0. So there is some ¢t € R™ such
that g(t) # 0, and since g is continuous, there is in fact some open ball B; containing ¢ such that
t' e By = g¢g(t') # 0. So we have

e V'€ B, ANt —B#0) —

e V' € By, Ir e ANt' — B —

e Vt' € By, Jx suchthat r€ Aand x €t — B <

e Vt' € By, 3z such that v € Aand x =t — B for some b € B <
e Vt' € By, 3z such that z € Aand t' =z + B for some b € B <=
e Vt' € By, 3t' such that ' € A+ B

And thus B; C A + B.

5 Problem 5

If the iterated integrals exist and are equal (so an interchange of integration order is justified), we
have

which is what we want to show.



To see that this is justified, let I = [0, 1] and note that the integrand can be written as H(x,y) =
f(x,9)g(z,y) where f(x,y) = x7f(y) and §(x,y) = xrg(z) are cylinders over f and g respectively.
Since f, g are in L'(I), their cylinders are measurable over R x I, and thus f , § are measurable on R?
as products of measurable functions. Then H is a measurable function as a product of measurable
functions as well.

But then |H]| is non-negative and measurable, so by Tonelli all iterated integrals will be equal. We
want to show that H € L*(R?) in order to apply Fubini, so we will show that [ |H| < co.

To that end, noting that f,g € L', we have fol f=C}y < oo and fol g = Cy < oco. Then,

/]RQ Hl = /01 /01 |f(2)g(y)| dz dy

= [ [15@ otw)l dz ay
= [Mlowl ([ el d) ay
= [ totic; ay

=y [ lotw)l dy

= Cng < 00,

and thus by Fubini, the original interchange of integrals was justified.

6 Problem 6

6.1 Part (a)
We have



dx

L1ann@iar= [ oo [ ) ay
o L[ ) a
< (/xihu(yndy) &
2h//_ o) dy d

//7 y)| dx dy

+
Zﬁ/\f(y)! - dx dy

2h/\f (y+ 1) = (y =) dy

— o [ 2Hlsw)] dy
= [ 1) dy < o
R

dx

since f was assumed to be in L!(R), where the changed bounds of integration are determined by
considering the following diagram:

To justify the change in the order of integration, consider the function H(x,y) = ﬁx Alz,y) f(y)
where A = {(z,y) € R?25 —co<z—h<z,y<z+ h}. Since f is measurable, the constant func-
tion (z,y) — ﬁ is measurable, and characteristic functions are measurable, H is a product of
measurable functions and thus measurable.

Thus it makes sense to write [ |H| as an iterated integral by Tonelli, and since [g2 |H| = [ |An(f)| <
oo by the above calculation, we have H € L'(R?), and Fubini applies.

6.2 Part (b)

Let € > 0; we then have



N = X4h Y e

Figure 1: Changing the bounds of integration

/lAh z)| dv = < )
B(hx

= ) d

/ <2h B(hx ) B(h,z) f=) dy

since o / o F@) (@ +B) — (2 = ) = 5 f@)2h = f(2)

dx

but since h — 0 will force y — z in the integral, for a fixed = we can let 7,(y) = f(y — x) and we
have |7z — f||; — 0 by continuity in L. Thus ffh |f(y —x) — f(z)| = 0, forcing || An(f) — fll; = O
ash—0. O
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1 Problem 1

Assuming the hint, we have



lim f(©) = lim + [ (@)~ f(0 —&)] 2 da

g0’ T 1150 2 Jrn

The fact that the limit as & — oo is equivalent to the limit ¢ — 0 is a direct consequence of
computing

. . IS
lim —— = lim —— =0,
lElo0 2/€° lelmoo 2[€] €]
since é—| is a unit vector, and the term ﬁ is a scalar that goes to zero.

But as an immediate consequence, this yields

L 5@ - s =) e
< [ 1@ = fa =) [eme
< [ 1f@) — fe =& da

— 0,

dzx

which follows from continuity in L' since f(z — &) — f(x) as & — 0.
It thus only remains to show that the hint holds.

Note: Sorry, I couldn’t figure out how to prove the hint!!

2 Problem 2
2.1 Part (a)

Assuming an interchange of integrals is justified, we have



= / / fl@—y)gly) e > dy da
= / / fl@—y)g(y) e ™ da dy

//f —27rz$ y) g(y) 6—27riy-§ dx dy
(t=x—y, dt = dx)

= [ [ rmemsglpe e ar ay
= / F(t)e2mite < / gly) e Ve dy) dt

= [ 10 () ar
= 9(6) [ Fe = ar

To see that this swap is justified, we’ll apply Fubini-Tonelli. Note that if f,g € L'(R"), then
the map (z,y) — f(z — y) is measurable on R™ x R™. Since g is measurable as well, taking
the cylinder on ¢ is also measurable on R™ x R™. The exponential is continuous, and thus
measurable on R™. Thus the integrand F'(z,y) is a product of measurable functions and thus
measurable. In particular, |F| = |fg| is measurable, and ths computation shows that one
iterated integral is finite. From a previous homework question, we know that f € L' — f
is bounded, and thus f g is bounded. Since |F'| is measurable and one iterated integrable was
finite, Fubini-Tonelli applies.

2.2 Part (b)

We'll use the following lemma: if f = g, then f = ¢ almost everywhere.

2.2.1 (i)

By part 1, we have

and so by the lemma, fxg=gx* f.

Similarly, we have

o —

(fxg)xh=Ffxgh=Fgh=Fgrh=fx(g=h).

2.2.2 (ii)

Suppose that there exists some I € L! such that f x I = f. Then f/*\I = f by the lemma, so
f I = f by the above result.



But this says that f (£)f &) = f (&) almost everywhere, and thus I (&) = 1 almost everywhere. Then

lim [(¢) #0,

|§]—o00

which by Problem 1 shows that I can not be in L', a contradiction.

3 Problem 3

3.1 (a)
3.1.1 (i)
Let g(z) = f(x —y). We then have

3 = [ gla)e > do
- / flo —y)e ™0 d
= [ o - el ieeznin g
_ 6—27riy~§/f(x _ y)6—2wi(w—y)~£ dr
(t=x—y,dt =dz)
_ o2yt / F(t)e 2T gy
= e TEf(g)

3.1.2 (ii)
Let h(z) = e*™@¥ f(z). We then have

h(€) == /627”'9”'?”]"(x)qf,fZ’ri"’“"'5 dz
_ / 2mizy—2miz ) f(z g
= / F&—y)e2mm e gy
= f(&~v).
3.2 (b)
We'll use the fact that if (-, -) is an inner product on a vector space V and A is an invertible

linear transformation, then for all x,y € V we have

(Ax, y) = (x, ATy)



where A~T denotes the transpose of the inverse of A (or (A~!)* if V is complex).

We then have

1 /f(x)ef%rix-T’Tf dr
|det T'|

x> Tz, dev— |detT| dx

1 —2miTx T~
:M/f(Tm)e mile T T§|detT\ dx

1

o
Gy /T =

= /f(T:z:)\ff%”'”“"'5 dz
since Te - T le=T""Te-E=xa-¢

—

= (foT)(&)

4 Problem 4

4.1 (a)
4.1.1 (i)

Let g(x) = xf(z). Then if an interchange of the derivative and the integral is justified, we have

1O = 5 [ @) ds
-, / f(x)(fge%ix'g dx
_ / F(a)2mize2m7E gy
= 2ri / zf (z)e 28 dy
= 2mig (£).

To see that the interchange is justified, we just note that we can apply the dominated conver-
gence theorem, since [ |f(z)e=2™*¢| < [|f| < oo, where we assumed f € L'.

4.1.2 (ii)
We have



)= [ A wyemie a

— f(l‘) —2miz- §

/f (2mi&)e” T g
1ntegrat1ng by parts)

/f —2mi€)e 2z gy
(since f(o0) = f(—

o) =0)
= 271'1:5/]((1‘)6_27”@'5 dz

2mié f(€)

4.2 (b)

Let G(z) = e~™* and O¢ be the operator that differentiates with respect to &
Then

o, GO _ GOIG(E) - G)2G(E)
‘\ci) ~ G(&)? ’

and the claim is that this is zero. This happens precisely when the numerator is zero, so we’d like
to show that

G(£)3:G(€) — G(€)a:G(€) = 0.

A direct computation shows that

9:G(§) = —2mEG(8),

(1)
and we claim that 85(?(5)

—27€G (&) as well, which follows from the following computation



0:G(€) = 0 / Gz)e27¢ dg
= /G’(az)age_%m'5 dz
_ / G(w)(—2miz)e 27 dg
_ / Gla)(=2miz)e 2™ dy
= i/2771‘(?(3:)6727”‘9”'£ dx
= i/@wG(x)e*Z’m'é dx by (1)

—

=i (2mi€G(§)) by part (i)
= —21¢G(8).

We can thus write

G(£)0eG (&) — G(€)0:G () = G(&)(—2mEG(€)) — G(€)(—2mEG(€)),

which is patently zero.

It follows that G _ cp for some constant ¢y, from which it follows that G &) = coG(§).
G(€)

Using the fact that G(0) = 1 by direct evaluation and G(0) = [ G(z) dz = 1, we can conclude that
co = 1 and thus G(§) = G(§).

5 Problem 5
5.1 (a)

By a direct computation. we have



1
D(¢) = * e 2mint gy

[N

1
2

= cos(—2mz€) + isin(—2mxf) dx

—/ cos(—2mz€) d

(since sin is odd and the domain is symmetric about 0)
1
2

= / (—27z€) d

(since cos is even and the domain is symmetric about 0)

< sin(—2mz¢) xij)
_ sin(7§)
=
5.2 (b)
5.2.1 (i)

Since F(z) = D(z) # D(x), we have F'(¢) = (D(£))? by question 2a, and so F(¢) = (““7525))2'

5.2.2 (ii)

Letting F denote the Fourier transform operator, we have F2(h)(¢) = h(—¢) for any h € L. In
particular, if f is an even function, then f(§) = —f(£) and F2(f) = f.

In this case, letting F' be the box function, F' can be seen to be even from its definition. Since
f = F(F) by part (i), we have

f=F(f) =F(F(F) = F(F) = F,
which says that f(z) = F(z), the original box function.

5.3 ()

By a direct computation of the integral in question, we have



I(z) = /6_2”'5'(227”'“Eg d€
0 . o0 .
:/ 6—27r(—§)€—27m:c§ d§+/ 627r562m:c§ df
—00 0

[o'e) . o0 .
:/ 6—27756—27rm§ df%/ e27r§e27rzx§ df
0 0
by the change of variables £ — —¢&, d§ — —d£ and swapping integration bounds

— /OO e—27r§e—27rix§ + e27r5627ri;t§ dé
0

1 o0 . .
27 Jo
_ i /oo e—u(1+ix) I efu(lfix) du
21 Jo
1 [ —eu(l+iz) y=co  _p—u(l=iz) y=co
T\ T idiz lumo T Ttiz lueo
B 1 < 1 n 1 )
S or \l+4ix  1—ix
_ 1 2
2l + a2
_ 1 1
ol 422

so P(x) = I(x).

Then, by the Fourier inversion formula, we have

N /e—2w|g\62mx5 _ /]5(6)6—27”':55 da
N /e—Qw\aezm’xg _ P(€)e 2 4y — 0
. /(e—mg\ _ p(g)) o= 2mITE g0 — ()

= (e_QFIE‘ - p(f)) e—27ria:§ =q.e. 0

A

— 67271-'6‘ =a.e P(§)7

where equality is almost everywhere and follows from the fact that if [ f = 0 then f = 0 almost
everywhere.

6 Problem 6

We first note that if Gy(z) = t=ne=mlal’/2 then Gi(€) = eI



Moreover, if an interchange of integrals is justified, we have have

= [ | [ e e aif ao
Rn

0
_ / / Go(x)e ™42 dt da
nJO

since the integrand and thus integral is positive.

_, / / Go(z)e ™12 dz dt
O n

_ / e—”tzt%—l( Gy () d:z:) dt
0 R™

:/ e ™ 12571 (1) dt
0

2,21
:/ewt dt,
0

which we claim is finite, so f € L!.

To see that the norm is finite, we note that

tef0,1] = e ™ <1
and if we take ¢ < %, we have 2¢ — 1 < 0 and thus

te[l,00) = t*71 <1.

Thus

2,21 b 20e 2,21
/e”t dt:/e”t dt+/e”t dt
0 0 1

1 0o 9
g/ 21 dt+/ e ™ dt
0 1

1 ') 9
< / 22l ar + / e dt
0 0

I
T TS

where the first term is obtained by directly evaluating the integral, and the second is derived from
the fact that its integral over the real line is 1 and it is an even function.

Justifying the interchange: we note that the integrand Gy (m)e’“tQtza_l is non-negative, and
we’ve just showed that one of the iterated integrals is absolutely convergent, so Tonelli will
apply if the integrand is measurable. But G(z) is a continuous function on R™ and the
remaining terms are continuous on R, so they are all measurable on R™ and R respectively
But then taking cylinders on everything in sight yields measurable functions, and the product
of measurable functions is measurable.

If another interchange of integrals is justified, we can compute



for = [ ([ Guwremret ar) vt aa
» \Jo
:// Gt(a:)677”52152571672’”""3'£ dt dz
n Jo

o —mt? 26 —1  —2miz-£
=9 Gi(x)e t e dz dt
0 JRn

:/ ot 21 (/ G()e 2w dx) dt
0 R™
_ / e~ 2E1 G (€) dt

0

_ > e—7rt2t25—1€—7rt2|§|2 dt
0

= = e_7rt2(1+‘§|2)t25—1 dt
0

= e~ TtV 1+|§\2)2t25—1 dt
0
t/ 14 |€%, ds = \/1+ |€)dt
2 S
1—1¢

E

- 2e—1 1
e ﬁ) N

= (1 ) ) [T e s
0

— (1+ ‘£|2)_€/€_ﬂ—t2t2€_1 dt

— PO,

To see that the interchange is justified, note that

00
/ / ‘Gt(x)efﬂ'tQthflef%riz-&
nJO

2mix-€

dt dx = / / ‘Gt(x)efﬂ-ﬁthfl’ dt dﬂ?,
nJo

since |e ‘ = 1. The integrand appearing is precisely what we showed was measurable
when computed || f||; above, so Tonelli applies.

Thus F(§) is the Fourier transform of the function g(z) := f(z)/||fll;- O
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1 Problem 1
1.1 Part a

We want to show that ¢?(N) is complete, so let {x,,} C £?(N) be a Cauchy sequence. We then have
|29 — 2*||,2 — 0, and we want to produce some X = li_)m 2" such that x € 2.
n—,oo



To this end, for each fixed index i, define

x; = lim x}.
n—oo

, 2
This is well-defined since ||#7 — 2|/, = 3, |#] — 2F| — 0, and since this is a sum of positive real

numbers that approaches zero, each term must approach zero. But then for a fixed ¢, the sequence

. 2
J k

of R.

X

is a Cauchy sequence of real numbers which necessarily converges by thethe completeness

We also have ||x — z7||,2 — 0 since

I — 2]l = || lim 2* — 27| = lim " — 27, 0
k—o0 02 k—o00

where the limit can be passed through the norm because the map t — ||t[/,2 is continuous. So
) — x in 2 as well.

It remains to show that x € £2(N), i.e. that 37, |x;|* < oco. To this end, we write

Ixlle = llx = 27 + 27| 2
<l =2l + 27| 2

— M < oo,

where lim; |x — 27||,2 = 0 by the previous argument, and the second term is bounded because
2 e = ||2]|p=M<oco. O

1.2 Part b

Let H be a Hilbert space with inner product (-, -) and induced norm || - ||.

Lemma: For any complex number z, we have

and as a corollary, since the inner product on H takes values in C, we have

R((z, iy)) = R(=i(z, y)) = 3((z, ).



We can compute the following:

Iz +ylI* = ll2ll* + lyl* + 2 R ({2, y))
lz =yl = llll* + lyl* — 2 R ({2, 4))

lz +ayl® = llll* + llyl* +2 R (2, iy))
= [l + llyll* + S({z, )

lz = ayl® = llll* + llyl* =2 R ((z, iy))
= [l + llyll* + S({z, )

and summing these all

Iz +y|> — |z — y)|* +illz + iy|* — illz + iyl =4 R ((z, y)) + 4 S ((z, y))
=4z, y).

To conclude that a linear map U is an isometry iff U is unitary, if we assume U is unitary then we
can write

|z = (z, @) = (Uz, Uz) = |Uz|*,

Assuming now that U is an isometry, by the polarization identity we can write

1
(Uz, Uy) = 7 (102 + Uy|* + Uz = Uy|* +il|Uz + Uyl* ~ iUz + Uy|P?)
1 . .
= (U@ +9)IP + U@ -y +illU@+y)|* - iU +9)IP)
1 . .
= (Il + 9l + llz =yl +ille + yII* = illz + yII?)
= (7, y).
L]
2 Problem 2
Lemma: The map (-, -): H x H — R is continuous.
Proof:

Let z,, — = and y,, — y, then



(Zny Yn) — (@, Y = K20, yn) = (2, Yn) + (@, yn) — (7, Y)|
=& — 2, Yn) + (2, Yn —Y)|
< Mzn —zllllynll + 2 llyn — vl
—0-M+C-0< oo,

where [|y,|| — ||y|| := M < oo since y € H implies that [|y| is finite.

2.1 Part a:

We want to show that sequences in E converge to elements of E+. Using the lemma, letting {e,}
be a sequence in B+, soy € F = (én, y) = 0. Since H is complete, e, — e € H; we can show
that e € B+ by letting y € E be arbitrary and computing

(e, y) = <li7£n €n, y> = liﬁn (€n, y) = li£nO =0,
soe€ Et.

2.2 Part b:

Let S := spany (E); then the smallest closed subspace containing E is S, the closure of S. We will
proceed by showing that E++ =S.

S C ELHL:
Let {z,} be a sequence in S, so z,, — z € S.

ELL

First, each z,, is in , since if we write x,, = > a;e; where e; € E, we have

ye EL = <xn7 y> = <Zaiei7 y> = Zai<ei7 y> =0 = Tp € (EL)J_.

It remains to show that x € E+L, which follows from

y € Et — (x, y) = <lirrlnacn, y> = liﬁn (Tn, Y) =0 = x € (EJ‘)J‘7

where we’ve used continuity of the inner product.
E+tLCS:

For notational convenience, let S, denote the closure S. Let z € E1. Noting that S, is closed, we
can define P, the operator projecting elements onto S, and write

t=Pr+(zx—Pzx)eS.®S;



But since (z,  — Pz) = 0 (because z — Pz € E+ and = € (E4)1), we can rewrite the first term
in this inner product to obtain

0= (z, x — Pz) = (Px + (x — Pz), © — Px) = (Pz, * — Pz) + (x — Pz, © — Pux),
where we can note that the first term is zero because Px € S. and x — Pz € S, and the second
term is ||z — Pz

But this says ||z — Pz||> = 0, so £ — Pz = 0 and thus = Pz € S,, which is what we wanted to
show.

3 Problem 3

3.1 Part a

We compute

1
|yeou2:/0 12 do = 1

1
fed® = [ 320 = 1)? =

1
=1
0

1
(27— 1)2

(e, €1) = /01 V3(2z — 1) do = Q(Qm - 1)

1
= 0.

4 0

which verifies that this is an orthonormal system.

3.2 Part b

We first note that this system spans the degree 1 polynomials in L?([0, 1]), since we have

[Ng g]u,x]u eo.c1]

which exhibits a matrix that changes basis from {1,z} to {eg, e1} which is invertible, so both sets
span the same subspace.

Thus the closest degree 1 polynomial f to 23 is given by the projection onto this subspace, and
since {e;} is orthonormal this is given by



fz) = Z <l’3, ei>ei

= <x3, 1>1 + <:r3, V3(2z — 1)>\/§(2x -1)
:/le d:p+\/§(2x—1)/1\/§m2(2x—1) dz
0 0

1 V3

=T — .

6

We can also compute

1 1
1=l = [ (a*—a+5)? do

6
_ 1
180
— =gl =
N2 = A%
4 Problem 4
4.1 Part a
411 i

We can first note that <1/\/§, cos(27rnx)> = <1/ﬂ, sin(27rma:)> = 0 for any n or m, since this
involves integrating either sine or cosine over an integer multiple of its period.

Letting m,n € Z, we can then compute

1
(cos(2mnzx), sin(2rmz)) :/ cos(2mnx) sin(2rma) dx
0

= % /01 sin(2m(n + m)x) — sin(2w(n — m)x) dx

1 /1 1 1

= f/ sin(2r(n+m)x) — = [ sin(27(n —m)zx) dx
2 Jo 2 Jo

=0,

which again follows from integration of sine over a multiple of its period (where we use the fact
that m +n,m —n € Z).

Similarly,



1

(cos(2mnx), cos(2mmzx)) = [ cos(2nnx) cos(2mrmz) dx

S—

1
/0 cos(2m(m + n)x) 4+ cos(2m(m — n)z) dx

fol cos(dmnz)+1dr=1 m=n

m#n

1
2
0

—— N

1

(sin(2mnz), sin(2rmz)) = [ sin(27nz)sin(2rme) dz

S—

1
= % /0 cos(2m(m — n)x) + cos(2w(m + n)z) dx

3 )y L+ cos(dmna) de=1 m=n
0 mtn

Thus each pairwise combination of elements are orthonormal, making the entire set orthonormal.

4.1.2 ii
‘We have

<€27rkac7 e—?ﬂz€x> _ / e27rzkx627rz&g dx
0

_ ! e27rikxef27riﬁx dax
0
1
_ e27ri(kf€)x dr
0
1
(= / Ldz =1 if k = ¢, otherwise:)
0
e2mi(k—0)z
~ 2rmi(k—0)lo
e27ri(k:—€) -1

1

- 27i(k —£)
pu— 07

since €2™* =1 for every k € Z, and k — ¢ € Z. Thus this set is orthonormal.

4.2 Part b
421 i

By the Weierstrass approximation theorem for functions on a bounded interval, we can find a
polynomials P,(x) such that || f — P,| ., — 0, i.e. the P, uniformly approximate f on [0,1].



Letting € > 0, we can thus choose a P such that ||f — P||,, < &, which necessarily implies that

| f — P||;1 < e since we have
1
/‘f |d$</8d1::5.
0

Thus we can write

where h(z) == f(z) — P(z) satisfies |h||;. < e. It only remains to show that P € L%([0,1]), but
this follows from the fact that any polynomial on a compact interval is uniformly bounded, say
|P(z)] < M < oo for all x € [0, 1], and thus

1 1
P12 :/ \P(2)|? da < / M? dx = M? < oo,
0 0
It follows that we can let g = P and h = f — P to obtain the desired result.

4.2.2 ii

By part (i), the claim is that it suffices to show this is true for f € L2. In this case, we can identify

/ f(x) cos(2mka) da = R(f(k))
/ f(@)sin(2rkz) de = S(f(k),

the real and imaginary parts of the kth Fourier coefficient of f respectively.

By Bessel’s inequality, we know that {f(k)} € (*(N), and so 3, ’f(k)‘ < 00.

keN

But this is a convergent sequence of real numbers, which necessarily implies that ’ f (k:)‘ — 0. In

particular, this also means that its real and imaginary parts tend to zero, which is exactly what we
wanted to show.

If we instead have f € L', write f = g+ h where g € L? and ||h||;1 — 0. Then

= /Ol(g(x) + h(x)) cos(2rkx) dx

/01 g(x) cos(2mkx) dx| +

/1 f(z) cos(2mkx) dx
0

IN

() cos(2mkx) dx

< /01 g(z) cos(2mkx) dx| + /01 |h(x)||cos(2mkx)| dx

=1g(k)| +e
— 0,

with a similar computation for [ f(x)sin(2rkz). O



5 Problem 5
5.1 Part 1

We use the following algorithm: given {v},, we set

e e; = v1, and then normalize to obtain €1 = e;/||e1]]
o € =0 — Dp<io1 (Vi €)6
The result set {¢;} is the orthonormalized basis.

We set e; = 1, and check that [|e;[|? = 2, and thus set &; = %

We then set

e2 =7 — (x, €1)é1
=z — (z, 1)1
11
=z —/ —x dx
-1vV2
=z — / odd function
= Z,U,

and so e3 = . We can then check that

1 1/2 2
feal = ([ 22 ax) =3,
—1 3

and so we set é3 = \/gx

We continue to compute

€3 = 1‘2 — <.T2, él>é1 — <IE2, é2>ég
3
=z - = x d:L'— — x dx

1
- 2( >‘ 1+3x/ odd function
1

Il

8

|
w\»—‘

We can then check that [les]|* = =, s0 we set



In summary, this yields

which are scalar multiples of the first three Legendre polynomials.

5.2 Part b

Let p(z) = a + bx + cx?, we are then looking for p such that || — p(x)||§ is minimized. Noting
that

p(x) € span {1, x,x2} = span {Py(x), P1(x), Pa(x)} =S,

we can conclude that p(z) will be the projection of 2% onto S. Thus p(z) = 37 (23, &)é;.

Proceeding to compute the terms in this expansion, we can note that <x3, f) for any f that is even
will result in integrating an odd function over a symmetric interval, yielding zero. So only one term
doesn’t vanish:

1

<£L’3, :U>3:::U/13:4 dacz%x

And thus p(z) = 2z is the minimizer.

5.3 Part c

The first three conditions necessitate g € S+ and ||g|| = 1. Since S is a closed subspace, we can
write 23 = p(z) + (2® — p(x)) € S @ S+, and so 2% — p(z) € S+.

The claim is that g(z) = 2> — p(z) is a scalar multiple of the desired maximizer. This follows from
the fact that

(2* = p, )| < lI=* ~ plllg]

10



by Cauchy-Schwarz, with equality precisely when g = A(z® — p) for some scalar X\. However, the
restriction | g|| = 1 forces A = |3 —pHil.

A computation shows that

and so we can take

6 Problem 6
6.1 Part a

To see that g € C, we can compute

1
(g, 1>:/ 1822 —5dr=6-5=1
0

L 18 5
(g, x>:/0 18x3—5xd$:Z—§:2.

To see that C = g+ S+, let f € C, s0o (f, 1) = 1 and (f, *) = 2. We can then conclude that
f —g e S*, since we have

(f—g, )="(f, 1)—(g, 1)=1-1=0
(f—g, oy =(f, 2)— (g, 2) =2—-2=0.

6.2 Part b

Note that this equivalent to finding an fo € C such that || fo|| is minimized.

Letting fo € C, be arbitrary and noting that by part (a) we have fo = g + s where s € S*, we can
compute

1foll> = (fo, fo)
=(g+s, g+s)
= |lg|* + 2R(g, s) + |Is]*,

which can be minimized by taking s = 0, which forces ||s||* = 0 and (g, s) = 0. But this imposes
the condition fop=g+0=g. O

11



Problem Set 8

D. Zack Garza
November 28, 2019

Contents
Problem 1
1.1 Part al . . . . . s 1
1.2 Part D . . . s 2
1.3 Part d ............................................ 2

3

R.1 Partal . . . .o s 3
1.1 Partd ... ... ... 3
2.1.2 Part il . . . . . . . e 4

E.2 Partﬂ ............................................ 5
5
ﬁ Probleml—l| 7

4.1 Parta . . . . . e 7
1.2 Part H . . . e 7
E Problem a 8
.1 Part al . . . . . . e 8
.2 Part H . . . e 9

10

1 Problem 1
1.1 Part a

It follows from the definition that ||f|,, =0 <= f = 0 almost everywhere, and if || f| is the
best upper bound for f almost everywhere, then |[cf]|,, is the best upper bound for c¢f almost
everywhere.

So it remains to show the triangle inequality. Suppose that |f(z)| < || f|l a-e. and |g(z)| < |9/l
a.e., then by the triangle inequality for the |-|p we have



[(f +9) @) <[f (@) +[g(z)] ae.
< flloe + 9l a-e.,

which means that || f + gll, < || fllo + 9]l as desired.

1.2 Part b

= : Suppose ||fn — fllo — 0, then for every e, N. can be chosen large enough such that
|fn(x) — f(x)] < € a.e., which precisely means that there exist sets E. such that x € E, =
|fn(@) — f(z)] and m(EZ) = 0.

But then taking the sequence g, = % — 0, we have f,, = f uniformly on E = (),, £, by definition,
and E° =, Ey, is still a null set.

<= Suppose f, = f uniformly on some set £ and m(E) = 0. Then for any ¢, we can choose N
large enough such that |f,(z) — f(z)| < € on E; but then ¢ is an upper bound for f, — f almost
everywhere, so || f, — f||, <& — 0.

1.3 Part c

To see that simple functions are dense in L>°(X), we can use the fact that f € L>°(X) <= there
exists a g such that f = g a.e. and ¢ is bounded.

Then there is a sequence s, of simple functions such that ||s, — g|/,, — 0, which follows from a
proof in Folland:

Proof. (a)Forn —0,1,2,...and0 < k < 27" — 1, let
=1 ( (627", (k+1)27"]) and F, =f_1{(_2“,oo]),

and define

o Fa

= ¥ k2 "xg +2"Xn,.
k=0
(This formula 1s messy in print but easily understood graphically; see Figure 2.1.) It
is easily checked that ¢,, < 41 foralln, and 0 < f — ¢, < 27" on the set where

f / ‘Tﬂ Tkn. racnlt tharafoemn Falla
‘-\-’u“ll- LWL Wl LI LU‘-*U"U



/

However, C(X) is dense L®(X) <= every f € L®(X) can be approximated by a sequence
{gr} € C2(X) in the sense that ||f — gn||,, — 0. To see why this can not be the case, let f(z) = 1,
s0 || f|lo, = 1 and let g, — f be an arbitrary sequence of C? functions converging to f pointwise.

Since every g, has compact support, say supp(g,) = Ey, then gy|z. = 0 and m(E5;) > 0. In
particular, this means that ||f — gn||,, = 1 for every n, so g, can not converge to f in the infinity
norm.

2 Problem 2

2.1 Part a

2.1.1 Part i

Lemma: |[1f, = m(X)'/p

This follows from [|[1]|} = [y [1|" = [y 1 = m(X) and taking pth roots. [

By Holder with p = ¢ = 2, we can now write
11l = 111 Fll < Il llf 1l = m(X) 2] £l
= [Ifl, < m(X)2]1f1l,.

Letting M := | f|| ., We also have

2 2 2 _ —
1718 = [ 197 < [ pP =22 [ 1= 2rm(x)
— £l < m(X) 2]
— m(X) 2y < mX) e

and combining these yields

1F 1l < m(O)Y2 (1 flly < m(O £llcs



from which it immediately follows

m(X) < oo = L¥(X)C L*(X) C LY(X).

The Inclusions Are Strict:
1. df € Ll(X) \ LQ(X):
Let X = [0,1] and consider f(z) = 272. Then

1
£l = /0 1% <oo by the p test,

while

1
9= [ e oo by theptest
0

2. 3f € L2(X) \ L®(X):
Take X = [0,1] and f(z) = 2~ 1. Then

1
I1£15 = / £ < oo by the p test,
0
while || f||,, > M for any finite M, since f is unbounded in neighborhoods of 0, so || f]|,, = oo.

2.1.2 Part ii
1. 3f € L?(X) \ L}(X) when m(X) = oc:
Take X = [1,00) and let f(z) = 2!, then

o
I1£13 = / x7? <oo by the p test,
0

o0
£, = /0 L o0 by the p test.

2. 3f € L®(X) \ L*(X) when m(X) = oc:
Take X =R and f(x) = 1. then

£l =1
1715 = [ 1= oo

3. LX) C LY (X) = m(X) <



Let f = xx, by assumption we can find a constant M such that |[xx|y < M||xx];-

Then pick a sequence of sets Ej ,* X such that m(Ey) < oo for all k, xg, , xx, and thus
IxEl, < Ml|xEl,- By the lemma, |[xg,|, = m(Ey)'/P, so we have

X &,
IxEly < Mlixel, = B2 <
Xz 1
E,)1/2
. mE) T
m(Ey)

— m(E) V2 <M
— m(Ey) < M? < co.

and by continuity of measure, we have limx m(Ey) = m(X) < M? < co. [

2.2 Part b
1. Li(X)NL>®(X) C L*(X):
Let f € LY(X)NL®(X) and M = ||f| ., then

113 = [ 152 = [ < [ wigl=ar 1= 17171 < o 1)
X X X
The inclusion is strict, since we know from above that there is a function in L?(X) that is not in
L>*(X).

Note that taking square roots in (1) immediately yields

#1206y < M1 AT -
2. L*(X) © LY(X) + L®(X):
Let f € L?(X), then write S = {x 5 |f(z)| > 1} and f = xsf + Xscf == g+ h.

Since x > 1 — 22> x, we have

2 _ _ 2 2 _ 2
loll? = [ tol= [11< [102 < [ 12 = 1015 < oo,
and so g € LY(X).

To see that h € L>°(X), we just note that h is bounded by 1 by construction, and so ||h||, < 1 < oo.

3 Problem 3

For notational convenience, it suffices to prove this for /?(N), where we re-index each sequence in
¢P(Z) using a bijection Z — N.

Note: this technically reorders all sums appearing, but since we are assuming absolute conver-
gence everywhere, this can be done. One can also just replace >0, |a;|” with 3= <ljl<m |a;|®
in what follows.



1. (1(N) C 22(N):

Suppose »_; \a|j < 00, then its tails go to zero, so choose N large enough so that

j>N = |aj|<1.

But then
>N = |a;]* < |aj],

and

N [e%s)
MolaiP=>"laP+ > agl?
j =1

j=N+1

N [e%)
<> la;P+ > lajl
j=1

j=N+1

o0
<M+ ), lajl
j=N+1

o0
<M+ ayl
j=1

< oQ.

where we just note that the first portion of the sum is a finite sum of finite numbers and thus
bounded.

To see that the inclusion is strict, take a := {j_l};il; then ||al|, < oo by the p-test by |lal|; = oo
since it yields the harmonic series.
2. /2(N) c ¢*°(N):

This follows from the contrapositive: if a is a sequence with unbounded terms, then [|a||, = 3 |a;|?
can not be finite, since convergence would require that |a;|* — 0 and thus |a;| — 0.

To see that the inclusion is strict, take a = {1}72,. Then |lal|,, = 1, but the corresponding sum
does not converge.

3. llally < llall;:

Let M = ||al|;, then

2
<1

2
2 2 lall3 aj
lall} < Jlalf = S <1 <= Z i

But then we can use the fact that

a5

M

2
<

‘ aj
M

s
<1l = |
< \M




to obtain

1

= Mzmﬂ = 1.
J

12
a5
M

a5

M

>

J

2

4. lalle < llally:

This follows from the fact that, we have

2
lafl%, = <Sup !%!) =supla;|* <Y lag* = Jlall3
J J j
and taking square roots yields the desired inequality.

Note: the middle inequality follows from the fact that the supremum S is the least upper
bound of all of the a;, so for all j, we have a; + ¢ > S for every € > 0. But in particular,
ay + a; > a; for any pair a;,ar where ay # 0, so ax + a; > S and thus so is the entire sum.

4 Problem 4

4.1 Part a

Let {fr} be a Cauchy sequence, then || fx — f;|,, — 0. Define a candidate limit by fixing z, then
using the fact that |f;(z) — fr(x)| — 0 as a Cauchy sequence in R, which converges to some f(z).

We want to show that and || f, — f|[, = 0 and f € C([0,1]).

This is immediate though, since f,, — f uniformly by construction, and the uniform limit of
continuous functions is continuous.

4.2 Part b

It suffices to produce a Cauchy sequence of continuous functions fj such that [|f; — f;]|; — 0 but
if we define f(x) := lim fi(z), we have either ||f||; = oo or f is not continuous.

To this end, take fiy(z) = 2* for k =1,2,--- , cc.

Then pointwise we have

1 z=

fk—>{0 xe[0,1)7

which has a clear discontinuity, but

1 . 1 1
1= Sl /0 S P



5 Problem 5
5.1 Part a

<= It suffices to show that the map

H — (*(N)

x = {(x, un) oty = {an},2y

is a surjection, and for every a € ¢2(N), we can pull back to some x € H such that ||x| 5 = [all ez

Following the proof in Neil’s notes, let a € ¢2(N) be given by a = {a;}, and define Sy = >3 a,u,,.
We then have

N
> anu,

n=M+1
N
= Z lanun|| g by Pythagoras, since the u,, are orthogonal
n=M+1
N
= Z |anlc lunllg
n=M+1
N
= Z lan|c since the u,, are orthonormal
n=M+1

-0 as N, M — oo,

SN — Sumlly =

H

which goes to zero because it is the tail of a convergent sum in R.
Since H is complete, every Cauchy sequence converges, and in particular Sy — x € H for some x.

‘We now have

|(x, u,)| = |(x — Sy + Sn, uy)] Vn, N
= |(x — SN, up) + (SN, uy)| Vn, N
<||x = Snll gllunll 7 + [{(Sn, )] Vn, N by Cauchy-Schwartz
= [lx = Snllg + [(Sn, un)| vn, N
=[x = Sl + lan] VYN >n
— 0+ |ay| as N — oo,

where we just note that

N N
(SN, up) = <Zajuj, un> = Zaj<uj, u,)=a, < N>n

J=1



since (u;j, u,) = 6, and so the a, term is extracted iff u,, actually appears as a summand.
We thus have

<X, un> = ‘an’ vn,

and since {u,} is a basis, we can apply Parseval’s identity to obtain

o0 [e.e]
2
Il = D 1% wa)| = lanl.
n=1 n=1

= : Given a vector x = )_, a,uy,, we can immediately note that both ||x||;; < oo and (x, u,) =
an. Since {u,} being a basis is equivalent to Parseval’s identity holding, we immediately obtain

0o 00
2

Y lan] =" (%, wn)| = [Ix[3 < oo

n=1 n=1

5.2 Part b

In both cases, suppose such a linear functional exists.

1. Using part (a), we know that H is isometrically isomorphic to ¢?(N), and thus H}/ =
(F2(N))Y =4 (N).

Note: this follows since ¢?(N)Y = ¢4(N) where p, q are Holder conjugates.

But then, since L € H", under the isometry f it maps to the functional

Ly : 13(Z) — C
a={an}— Z annt,

neN

which under the identification of dual spaces g identifies L, with the vector b := {nil}neN.

Most importantly, these are all isometries, so we have the equalities

1Ll = el 2oy = 1By

so it suffices to compute the ¢? norm of the sequence b, = % To this end, we have

12

n

bl =3

which shows that ||L|| 5 = 7/V/6.



2. Using the same argument, we obtain b = {n_l/ 2} - and thus
n

2
1L = IblEgy = 3 [n 2] = .

which shows that L is unbounded, and thus can not be a continuous linear functional. [

6 Problem 6

We can use the fact that A, € (LP)Y = L9, where this is an isometric isomorphism given by the
map

I:L%— (LP)Y
g (F> [ f9)

Under this identification, for any A € (L?)Y, to any A € (L)Y we can associate a g € L9, where we
have

1Al oy = gl

In this case, we can identify A, = I(g), where g(x) = 2% and we can verify that g € L9 by computing
its norm:

2qg+1

p—1
= <
3p—1 oo

where we identify ¢ = 1%’ and note that this is finite for all 1 < p < oo since it limits to %

But then

1 1 1 p—1
o . D — a D — P
sl =l = (3=5) = (B=5) -

which shows that A, is bounded and thus a continuous linear functional. [
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