- 1. A family of sets $\mathcal{R} \subset \mathcal{P}(X)$ is called a **ring** if it is closed under finite unions and differences (i.e., if $E_1, \ldots, E_n \in \mathcal{R}$, then $\bigcup_{1}^{n} E_j \in \mathcal{R}$, and if $E, F \in \mathcal{R}$, then $E \setminus F \in \mathcal{R}$). A ring that is closed under countable unions is called a σ -ring.
 - a. Rings (resp. σ -rings) are closed under finite (resp. countable) intersections.
 - **b.** If \mathcal{R} is a ring (resp. σ -ring), then \mathcal{R} is an algebra (resp. σ -algebra) iff $X \in \mathcal{R}$.
 - **c.** If \mathbb{R} is a σ -ring, then $\{E \subset X : E \in \mathbb{R} \text{ or } E^c \in \mathbb{R}\}$ is a σ -algebra.
 - **d.** If \mathcal{R} is a σ -ring, then $\{E \subset X : E \cap F \in \mathcal{R} \text{ for all } F \in \mathcal{R}\}$ is a σ -algebra.
- 2. Complete the proof of Proposition 1.2.
- 3. Let \mathcal{M} be an infinite σ -algebra.
 - a. M contains an infinite sequence of disjoint sets.
 - **b.** $\operatorname{card}(\mathcal{M}) \geq \mathfrak{c}$.
- **4.** An algebra \mathcal{A} is a σ -algebra iff \mathcal{A} is closed under countable increasing unions (i.e., if $\{E_i\}_1^{\infty} \subset \mathcal{A}$ and $E_1 \subset E_2 \subset \cdots$, then $\bigcup_{i=1}^{\infty} E_i \in \mathcal{A}$).
- 5. If $\mathcal M$ is the σ -algebra generated by $\mathcal E$, then $\mathcal M$ is the union of the σ -algebras generated by $\mathcal F$ as $\mathcal F$ ranges over all countable subsets of $\mathcal E$. (Hint: Show that the latter object is a σ -algebra.)
- **1.9 Theorem.** Suppose that (X, \mathcal{M}, μ) is a measure space. Let $\mathcal{N} = \{N \in \mathcal{M} : \mu(N) = 0\}$ and $\overline{\mathcal{M}} = \{E \cup F : E \in \mathcal{M} \text{ and } F \subset N \text{ for some } N \in \mathcal{N}\}$. Then $\overline{\mathcal{M}}$ is a σ -algebra, and there is a unique extension $\overline{\mu}$ of μ to a complete measure on $\overline{\mathcal{M}}$.

Proof. Since \mathbb{M} and \mathbb{N} are closed under countable unions, so is $\overline{\mathbb{M}}$. If $E \cup F \in \overline{\mathbb{M}}$ where $E \in \mathbb{M}$ and $F \subset N \in \mathbb{N}$, we can assume that $E \cap N = \emptyset$ (otherwise, replace F and N by $F \setminus E$ and $N \setminus E$). Then $E \cup F = (E \cup N) \cap (N^c \cup F)$, so $(E \cup F)^c = (E \cup N)^c \cup (N \setminus F)$. But $(E \cup N)^c \in \mathbb{M}$ and $(E \cup F)^c \in \overline{\mathbb{M}}$. Thus $\overline{\mathbb{M}}$ is a σ_{min} algebra.

If $E \cup F \in \overline{\mathbb{M}}$ as above, we set $\overline{\mu}(E \cup F) = \mu(E)$. This is well defined, since if $E_1 \cup F_1 = E_2 \cup F_2$ where $F_j \subset N_j \in \mathbb{N}$, then $E_1 \subset E_2 \cup N_2$ and so $\mu(E_1) \leq \mu(E_2) + \mu(N_2) = \mu(E_2)$, and likewise $\mu(E_2) \leq \mu(E_1)$. It is easily verified that $\overline{\mu}$ is a complete measure on $\overline{\mathbb{M}}$, and that $\overline{\mu}$ is the only measure on $\overline{\mathbb{M}}$ that extends μ ; details are left to the reader (Exercise 6).

- **6.** Complete the proof of Theorem 1.9.
- 7. If μ_1, \ldots, μ_n are measures on (X, \mathcal{M}) and $a_1, \ldots, a_n \in [0, \infty)$, then $\sum_{j=1}^{n} a_j \mu_j$ is a measure on (X, \mathcal{M}) .

- **9.** If (X, \mathcal{M}, μ) is a measure space and $E, F \in \mathcal{M}$, then $\mu(E) + \mu(F) = \mu(E \cup F) + \mu(E \cap F)$.
- **10.** Given a measure space (X, \mathcal{M}, μ) and $E \in \mathcal{M}$, define $\mu_E(A) = \mu(A \cap E)$ for $A \in \mathcal{M}$. Then μ_E is a measure.
- 11. A finitely additive measure μ is a measure iff it is continuous from below as in Theorem 1.8c. If $\mu(X) < \infty$, μ is a measure iff it is continuous from above as in Theorem 1.8d.
- 12. Let (X, \mathcal{M}, μ) be a finite measure space.
 - **a.** If $E, F \in \mathcal{M}$ and $\mu(E \triangle F) = 0$, then $\mu(E) = \mu(F)$.
 - **b.** Say that $E \sim F$ if $\mu(E \triangle F) = 0$; then \sim is an equivalence relation on \mathcal{M} .
 - **c.** For $E, F \in \mathcal{M}$, define $\rho(E, F) = \mu(E \triangle F)$. Then $\rho(E, G) \le \rho(E, F) + \rho(F, G)$, and hence ρ defines a metric on the space \mathcal{M}/\sim of equivalence classes.
- 13. Every σ -finite measure is semifinite.
- **14.** If μ is a semifinite measure and $\mu(E)=\infty$, for any C>0 there exists $F\subset E$ with $C<\mu(F)<\infty$.
- **15.** Given a measure μ on (X, \mathcal{M}) , define μ_0 on \mathcal{M} by $\mu_0(E) = \sup\{\mu(F) : F \subset E \text{ and } \mu(F) < \infty\}.$
 - **a.** μ_0 is a semifinite measure. It is called the **semifinite part** of μ .
 - **b.** If μ is semifinite, then $\mu = \mu_0$. (Use Exercise 14.)

- c. There is a measure ν on M (in general, not unique) which assumes only the values 0 and ∞ such that $\mu = \mu_0 + \nu$.
- **16.** Let (X, \mathcal{M}, μ) be a measure space. A set $E \subset X$ is called **locally measurable** if $E \cap A \in \mathcal{M}$ for all $A \in \mathcal{M}$ such that $\mu(A) < \infty$. Let $\widetilde{\mathcal{M}}$ be the collection of all locally measurable sets. Clearly $\mathcal{M} \subset \widetilde{\mathcal{M}}$; if $\mathcal{M} = \widetilde{\mathcal{M}}$, then μ is called **saturated**.
 - **a.** If μ is σ -finite, then μ is saturated.
 - **b.** M is a σ -algebra.
 - **c.** Define $\widetilde{\mu}$ on $\widetilde{\mathcal{M}}$ by $\widetilde{\mu}(E) = \mu(E)$ if $E \in \mathcal{M}$ and $\widetilde{\mu}(E) = \infty$ otherwise. Then $\widetilde{\mu}$ is a saturated measure on $\widetilde{\mathcal{M}}$, called the **saturation** of μ .
 - **d.** If μ is complete, so is $\widetilde{\mu}$.
 - **e.** Suppose that μ is semifinite. For $E \in \widetilde{\mathcal{M}}$, define $\underline{\mu}(E) = \sup\{\mu(A) : A \in \mathcal{M} \text{ and } A \subset E\}$. Then μ is a saturated measure on $\widetilde{\mathcal{M}}$ that extends μ .
 - f. Let X_1, X_2 be disjoint uncountable sets, $X = X_1 \cup X_2$, and \mathfrak{M} the σ -algebra of countable or co-countable sets in X. Let μ_0 be counting measure on $\mathfrak{P}(X_1)$, and define μ on \mathfrak{M} by $\mu(E) = \mu_0(E \cap X_1)$. Then μ is a measure on \mathfrak{M} , $\widetilde{\mathfrak{M}} = \mathfrak{P}(X)$, and in the notation of parts (c) and (e), $\widetilde{\mu} \neq \mu$.

- 17. If μ^* is an outer measure on X and $\{A_j\}_1^\infty$ is a sequence of disjoint μ^* -measurable sets, then $\mu^*(E\cap (\bigcup_1^\infty A_j))=\sum_1^\infty \mu^*(E\cap A_j)$ for any $E\subset X$.
- **18.** Let $\mathcal{A} \subset \mathcal{P}(X)$ be an algebra, \mathcal{A}_{σ} the collection of countable unions of sets in \mathcal{A} , and $\mathcal{A}_{\sigma\delta}$ the collection of countable intersections of sets in \mathcal{A}_{σ} . Let μ_0 be a premeasure on \mathcal{A} and μ^* the induced outer measure.
 - **a.** For any $E \subset X$ and $\epsilon > 0$ there exists $A \in \mathcal{A}_{\sigma}$ with $E \subset A$ and $\mu^*(A) \leq \mu^*(E) + \epsilon$.
 - **b.** If $\mu^*(E)<\infty$, then E is μ^* -measurable iff there exists $B\in\mathcal{A}_{\sigma\delta}$ with $E\subset B$ and $\mu^*(B\setminus E)=0$.
 - **c.** If μ_0 is σ -finite, the restriction $\mu^*(E) < \infty$ in (b) is superfluous.
- **19.** Let μ^* be an outer measure on X induced from a finite premeasure μ_0 . If $E\subset X$, define the **inner measure** of E to be $\mu_*(E)=\mu_0(X)-\mu^*(E^c)$. Then E is μ^* -measurable iff $\mu^*(E)=\mu_*(E)$. (Use Exercise 18.)
- **20.** Let μ^* be an outer measure on X, \mathcal{M}^* the σ -algebra of μ^* -measurable sets, $\overline{\mu} = \mu^* | \mathcal{M}^*$, and μ^+ the outer measure induced by $\overline{\mu}$ as in (1.12) (with $\overline{\mu}$ and \mathcal{M}^* replacing μ_0 and \mathcal{A}).
 - **a.** If $E \subset X$, we have $\mu^*(E) \leq \mu^+(E)$, with equality iff there exists $A \in \mathcal{M}^*$ with $A \supset E$ and $\mu^*(A) = \mu^*(E)$.
 - **b.** If μ^* is induced from a premeasure, then $\mu^* = \mu^+$. (Use Exercise 18a.)
 - **c.** If $X=\{0,1\}$, there exists an outer measure μ^* on X such that $\mu^* \neq \mu^+$.
- **21.** Let μ^* be an outer measure induced from a premeasure and $\overline{\mu}$ the restriction of μ^* to the μ^* -measurable sets. Then $\overline{\mu}$ is saturated. (Use Exercise 18.)
- **1.19** Theorem. If $E \subset \mathbb{R}$, the following are equivalent.
- a. $E \in \mathcal{M}_{\mu}$.
- b. $E = V \setminus N_1$ where V is a G_δ set and $\mu(N_1) = 0$.
- c. $E = H \cup N_2$ where H is an F_{σ} set and $\mu(N_2) = 0$.
- **1.20 Proposition.** If $E\in\mathcal{M}_{\mu}$ and $\mu(E)<\infty$, then for every $\epsilon>0$ there is a set A that is a finite union of open intervals such that $\mu(E\triangle A)<\epsilon$.

1.22 Proposition. Let C be the Cantor set.

Ch. 2

- a. C is compact, nowhere dense, and totally disconnected (i.e., the only connected subsets of C are single points). Moreover, C has no isolated points.
- b. m(C) = 0.
- c. $\operatorname{card}(C) = \mathfrak{c}$.

- **22.** Let (X, \mathcal{M}, μ) be a measure space, μ^* the outer measure induced by μ according to (1.12), \mathcal{M}^* the σ -algebra of μ^* -measurable sets, and $\overline{\mu} = \mu^* | \mathcal{M}^*$.
 - **a.** If μ is σ -finite, then $\overline{\mu}$ is the completion of μ . (Use Exercise 18.)
 - **b.** In general, $\overline{\mu}$ is the saturation of the completion of μ . (See Exercises 16 and 21.)
- **23.** Let \mathcal{A} be the collection of finite unions of sets of the form $(a,b] \cap \mathbb{Q}$ where $-\infty \leq a < b \leq \infty$.
 - **a.** \mathcal{A} is an algebra on \mathbb{Q} . (Use Proposition 1.7.)
 - **b.** The σ -algebra generated by \mathcal{A} is $\mathcal{P}(\mathbb{Q})$.
 - **c.** Define μ_0 on \mathcal{A} by $\mu_0(\varnothing) = 0$ and $\mu_0(A) = \infty$ for $A \neq \varnothing$. Then μ_0 is a premeasure on \mathcal{A} , and there is more than one measure on $\mathcal{P}(\mathbb{Q})$ whose restriction to \mathcal{A} is μ_0 .
- **24.** Let μ be a finite measure on (X, \mathcal{M}) , and let μ^* be the outer measure induced by μ . Suppose that $E \subset X$ satisfies $\mu^*(E) = \mu^*(X)$ (but not that $E \in \mathcal{M}$).
 - **a.** If $A, B \in \mathcal{M}$ and $A \cap E = B \cap E$, then $\mu(A) = \mu(B)$.
 - **b.** Let $\mathcal{M}_E = \{A \cap E : A \in \mathcal{M}\}$, and define the function ν on \mathcal{M}_E defined by $\nu(A \cap E) = \mu(A)$ (which makes sense by (a)). Then \mathcal{M}_E is a σ -algebra on E and ν is a measure on \mathcal{M}_E .

Exercises

- **25.** Complete the proof of Theorem 1.19.
- 26. Prove Proposition 1.20. (Use Theorem 1.18.)
- 27. Prove Proposition 1.22a. (Show that if $x, y \in C$ and x < y, there exists $z \notin C$ such that x < z < y.)
- **28.** Let F be increasing and right continuous, and let μ_F be the associated measure. Then $\mu_F(\{a\}) = F(a) F(a-)$, $\mu_F([a,b]) = F(b-) F(a-)$, $\mu_F([a,b]) = F(b) F(a-)$, and $\mu_F((a,b)) = F(b-) F(a)$.
- **29.** Let E be a Lebesgue measurable set.
 - **a.** If $E \subset N$ where N is the nonmeasurable set described in §1.1, then m(E) = 0.
 - **b.** If m(E) > 0, then E contains a nonmeasurable set. (It suffices to assume $E \subset [0,1]$. In the notation of §1.1, $E = \bigcup_{r \in R} E \cap N_r$.)

- **30.** If $E \in \mathcal{L}$ and m(E) > 0, for any $\alpha < 1$ there is an open interval I such that $m(E \cap I) > \alpha m(I)$.
- **31.** If $E \in \mathcal{L}$ and m(E) > 0, the set $E E = \{x y : x, y \in E\}$ contains an interval centered at 0. (If I is as in Exercise 30 with $\alpha > \frac{3}{4}$, then E E contains $(-\frac{1}{2}m(I), \frac{1}{2}m(I))$.)
- **32.** Suppose $\{\alpha_j\}_1^{\infty} \subset (0,1)$.
 - a. $\prod_{1}^{\infty} (1 \alpha_j) > 0$ iff $\sum_{1}^{\infty} \alpha_j < \infty$. (Compare $\sum_{1}^{\infty} \log(1 \alpha_j)$ to $\sum \alpha_j$.)
 - **b.** Given $\beta \in (0,1)$, exhibit a sequence $\{\alpha_i\}$ such that $\prod_{i=1}^{\infty} (1-\alpha_i) = \beta$.
- 33. There exists a Borel set $A \subset [0,1]$ such that $0 < m(A \cap I) < m(I)$ for every subinterval I of [0,1]. (Hint: Every subinterval of [0,1] contains Cantor-type sets of positive measure.)

In Exercises 1–7, (X, \mathcal{M}) is a measurable space.

- 1. Let $f: X \to \overline{\mathbb{R}}$ and $Y = f^{-1}(\mathbb{R})$. Then f is measurable iff $f^{-1}(\{-\infty\}) \in \mathcal{M}$, $f^{-1}(\{\infty\}) \in \mathcal{M}$, and f is measurable on Y.
- 2. Suppose $f, g: X \to \overline{\mathbb{R}}$ are measurable.
 - **a.** fg is measurable (where $0 \cdot (\pm \infty) = 0$).
 - **b.** Fix $a \in \mathbb{R}$ and define h(x) = a if $f(x) = -g(x) = \pm \infty$ and h(x) = f(x) + g(x) otherwise. Then h is measurable.
- 3. If $\{f_n\}$ is a sequence of measurable functions on X, then $\{x : \lim f_n(x) \text{ exists}\}$ is a measurable set.
- **4.** If $f: X \to \overline{\mathbb{R}}$ and $f^{-1}((r, \infty]) \in \mathcal{M}$ for each $r \in \mathbb{Q}$, then f is measurable.
- 5. If $X = A \cup B$ where $A, B \in \mathcal{M}$, a function f on X is measurable iff f is measurable on A and on B.
- **6.** The supremum of an uncountable family of measurable $\overline{\mathbb{R}}$ -valued functions on X can fail to be measurable (unless the σ -algebra \mathfrak{M} is very special).
- 7. Suppose that for each $\alpha \in \mathbb{R}$ we are given a set $E_{\alpha} \in \mathcal{M}$ such that $E_{\alpha} \subset E_{\beta}$ whenever $\alpha < \beta$, $\bigcup_{\alpha \in \mathbb{R}} E_{\alpha} = X$, and $\bigcap_{\alpha \in \mathbb{R}} E_{\alpha} = \emptyset$. Then there is a measurable function $f: X \to \mathbb{R}$ such that $f(x) \leq \alpha$ on E_{α} and $f(x) \geq \alpha$ on E_{α}^c for every α . (Use Exercise 4.)
- **8.** If $f: \mathbb{R} \to \mathbb{R}$ is monotone, then f is Borel measurable.
- **9.** Let $f : [0,1] \to [0,1]$ be the Cantor function (§1.5), and let g(x) = f(x) + x. **a.** g is a bijection from [0,1] to [0,2], and $h = g^{-1}$ is continuous from [0,2] to [0,1].
 - **b.** If C is the Cantor set, m(g(C)) = 1.
 - c. By Exercise 29 of Chapter 1, g(C) contains a Lebesgue nonmeasurable set
 - A. Let $B = g^{-1}(A)$. Then B is Lebesgue measurable but not Borel.
- **8.** If $f: \mathbb{R} \to \mathbb{R}$ is monotone, then f is Borel measurable.
- **9.** Let $f : [0,1] \to [0,1]$ be the Cantor function (§1.5), and let g(x) = f(x) + x. **a.** g is a bijection from [0,1] to [0,2], and $h = g^{-1}$ is continuous from [0,2] to [0,1].
 - **b.** If C is the Cantor set, m(g(C)) = 1.
 - c. By Exercise 29 of Chapter 1, g(C) contains a Lebesgue nonmeasurable set
 - A. Let $B = g^{-1}(A)$. Then B is Lebesgue measurable but not Borel.

Exercises

- 12. Prove Proposition 2.20. (See Proposition 0.20, where a special case is proved.)
- 13. Suppose $\{f_n\} \subset L^+$, $f_n \to f$ pointwise, and $\int f = \lim \int f_n < \infty$. Then $\int_E f = \lim \int_E f_n$ for all $E \in \mathcal{M}$. However, this need not be true if $\int f = \lim \int f_n = \infty$.
- **14.** If $f \in L^+$, let $\lambda(E) = \int_E f \, d\mu$ for $E \in \mathcal{M}$. Then λ is a measure on \mathcal{M} , and for any $g \in L^+$, $\int g \, d\lambda = \int f g \, d\mu$. (First suppose that g is simple.)
- **15.** If $\{f_n\} \subset L^+$, f_n decreases pointwise to f, and $\int f_1 < \infty$, then $\int f = \lim_{n \to \infty} \int f_n$.
- **16.** If $f \in L^+$ and $\int f < \infty$, for every $\epsilon > 0$ there exists $E \in \mathcal{M}$ such that $\mu(E) < \infty$ and $\int_E f > (\int f) \epsilon$.
- 17. Assume Fatou's lemma and deduce the monotone convergence theorem from it.

Exercises

- 18. Fatou's lemma remains valid if the hypothesis that $f_n \in L^+$ is replaced by the hypothesis that f_n is measurable and $f_n \ge -g$ where $g \in L^+ \cap L^1$. What is the analogue of Fatou's lemma for nonpositive functions?
- **19.** Suppose $\{f_n\} \subset L^1(\mu)$ and $f_n \to f$ uniformly.
 - **a.** If $\mu(X) < \infty$, then $f \in L^1(\mu)$ and $\int f_n \to \int f$.
 - **b.** If $\mu(X) = \infty$, the conclusions of (a) can fail. (Find examples on $\mathbb R$ with Lebesgue measure.)
- **20.** (A generalized Dominated Convergence Theorem) If $f_n, g_n, f, g \in L^1$, $f_n \to f$ and $g_n \to g$ a.e., $|f_n| \le g_n$, and $\int g_n \to \int g$, then $\int f_n \to \int f$. (Rework the proof of the dominated convergence theorem.)
- **21.** Suppose $f_n, f \in L^1$ and $f_n \to f$ a.e. Then $\int |f_n f| \to 0$ iff $\int |f_n| \to \int |f|$. (Use Exercise 20.)
- **22.** Let μ be counting measure on \mathbb{N} . Interpret Fatou's lemma and the monotone and dominated convergence theorems as statements about infinite series.
- **23.** Given a bounded function $f:[a,b] \to \mathbb{R}$, let

$$H(x) = \lim_{\delta \to 0} \sup_{|y-x| \le \delta} f(y), \qquad h(x) = \lim_{\delta \to 0} \inf_{|y-x| \le \delta} f(y).$$

2.20 Proposition. If $f \in L^+$ and $\int f < \infty$, then $\{x : f(x) = \infty\}$ is a null set and $\{x : f(x) > 0\}$ is σ -finite.

The proof is left to the reader (Exercise 12).

23. Given a bounded function $f:[a,b] \to \mathbb{R}$, let

$$H(x) = \lim_{\delta \to 0} \sup_{|y-x| \le \delta} f(y), \qquad h(x) = \lim_{\delta \to 0} \inf_{|y-x| \le \delta} f(y).$$

Prove Theorem 2.28b by establishing the following lemmas:

- **a.** H(x) = h(x) iff f is continuous at x.
- **b.** In the notation of the proof of Theorem 2.28a, H=G a.e. and h=g a.e. Hence H and h are Lebesgue measurable, and $\int_{[a,b]} H \, dm = \overline{I}_a^b(f)$ and $\int_{[a,b]} h \, dm = \underline{I}_a^b(f)$.
- **24.** Let (X, \mathcal{M}, μ) be a measure space with $\mu(X) < \infty$, and let $(X, \overline{\mathcal{M}}, \overline{\mu})$ be its completion. Suppose $f: X \to \mathbb{R}$ is bounded. Then f is $\overline{\mathcal{M}}$ -measurable (and hence in $L^1(\overline{\mu})$) iff there exist sequences $\{\phi_n\}$ and $\{\psi_n\}$ of \mathcal{M} -measurable simple functions such that $\phi_n \leq f \leq \psi_n$ and $\int (\psi_n \phi_n) \, d\mu < n^{-1}$. In this case, $\lim \int \phi_n \, d\mu = \lim \int \psi_n \, d\mu = \int f \, d\overline{\mu}$.
- 25. Let $f(x) = x^{-1/2}$ if 0 < x < 1, f(x) = 0 otherwise. Let $\{r_n\}_1^{\infty}$ be an enumeration of the rationals, and set $g(x) = \sum_{n=1}^{\infty} 2^{-n} f(x r_n)$.
 - **a.** $g \in L^1(m)$, and in particular $g < \infty$ a.e.
 - **b.** g is discontinuous at every point and unbounded on every interval, and it remains so after any modification on a Lebesgue null set.
 - **c.** $g^2 < \infty$ a.e., but g^2 is not integrable on any interval.
- **26.** If $f \in L^1(m)$ and $F(x) = \int_{-\infty}^x f(t) dt$, then F is continuous on \mathbb{R} .
- **27.** Let $f_n(x) = ae^{-nax} be^{-nbx}$ where 0 < a < b.
 - a. $\sum_{1}^{\infty} \int_{0}^{\infty} |f_{n}(x)| dx = \infty.$
 - **b.** $\sum_{1}^{\infty} \int_{0}^{\infty} f_n(x) dx = 0.$
 - c. $\sum_{n=1}^{\infty} f_n \in L^1([0,\infty), m)$, and $\int_0^{\infty} \sum_{n=1}^{\infty} f_n(x) dx = \log(b/a)$.
- 28. Compute the following limits and justify the calculations:
 - **a.** $\lim_{n\to\infty} \int_0^\infty (1+(x/n))^{-n} \sin(x/n) dx$.
 - **b.** $\lim_{n\to\infty} \int_0^1 (1+nx^2)(1+x^2)^{-n} dx$.
 - c. $\lim_{n\to\infty} \int_0^\infty n \sin(x/n) [x(1+x^2)]^{-1} dx$.
 - **d.** $\lim_{n\to\infty} \int_a^\infty n(1+n^2x^2)^{-1} dx$. (The answer depends on whether a>0, a=0, or a<0. How does this accord with the various convergence theorems?)

- **29.** Show that $\int_0^\infty x^n e^{-x} dx = n!$ by differentiating the equation $\int_0^\infty e^{-tx} dx = 1/t$. Similarly, show that $\int_{-\infty}^\infty x^{2n} e^{-x^2} dx = (2n)! \sqrt{\pi}/4^n n!$ by differentiating the equation $\int_{-\infty}^\infty e^{-tx^2} dx = \sqrt{\pi/t}$ (see Proposition 2.53).
- **30.** Show that $\lim_{k\to\infty} \int_0^k x^n (1-k^{-1}x)^k dx = n!$.
- 31. Derive the following formulas by expanding part of the integrand into an infinite series and justifying the term-by-term integration. Exercise 29 may be useful. (*Note:* In (d) and (e), term-by-term integration works, and the resulting series converges, only for a>1, but the formulas as stated are actually valid for all a>0.)
 - **a.** For a > 0, $\int_{-\infty}^{\infty} e^{-x^2} \cos ax \, dx = \sqrt{\pi} e^{-a^2/4}$.
 - **b.** For a > -1, $\int_0^1 x^a (1-x)^{-1} \log x \, dx = \sum_1^\infty (a+k)^{-2}$.
 - c. For a > 1, $\int_0^\infty x^{a-1} (e^x 1)^{-1} dx = \Gamma(a)\zeta(a)$, where $\zeta(a) = \sum_1^\infty n^{-a}$.
 - **d.** For a > 1, $\int_0^\infty e^{-ax} x^{-1} \sin x \, dx = \arctan(a^{-1})$.
 - **e.** For a > 1, $\int_0^\infty e^{-ax} J_0(x) dx = (s^2 + 1)^{-1/2}$, where $J_0(x) = \sum_0^\infty (-1)^n x^{2n} / 4^n (n!)^2$ is the Bessel function of order zero.
- **32.** Suppose $\mu(X) < \infty$. If f and g are complex-valued measurable functions on X, define

$$\rho(f,g) = \int \frac{|f-g|}{1+|f-g|} d\mu.$$

Then ρ is a metric on the space of measurable functions if we identify functions that are equal a.e., and $f_n \to f$ with respect to this metric iff $f_n \to f$ in measure.

- **33.** If $f_n \ge 0$ and $f_n \to f$ in measure, then $\int f \le \liminf \int f_n$.
- **34.** Suppose $|f_n| \leq g \in L^1$ and $f_n \to f$ in measure.
 - **a.** $\int f = \lim \int f_n$.
 - **b.** $f_n \to f$ in L^1 .
- **35.** $f_n \to f$ in measure iff for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that $\mu(\{x : |f_n(x) f(x)| \ge \epsilon\}) < \epsilon$ for $n \ge N$.
- **36.** If $\mu(E_n) < \infty$ for $n \in \mathbb{N}$ and $\chi_{E_n} \to f$ in L^1 , then f is (a.e. equal to) the characteristic function of a measurable set.

- 37. Suppose that f_n and f are measurable complex-valued functions and $\phi: \mathbb{C} \to \mathbb{C}$.
 - **a.** If ϕ is continuous and $f_n \to f$ a.e., then $\phi \circ f_n \to \phi \circ f$ a.e.
 - **b.** If ϕ is uniformly continuous and $f_n \to f$ uniformly, almost uniformly, or in measure, then $\phi \circ f_n \to \phi \circ f$ uniformly, almost uniformly, or in measure, respectively.
 - **c.** There are counterexamples when the continuity assumptions on ϕ are not satisfied.
- **38.** Suppose $f_n \to f$ in measure and $g_n \to g$ in measure.
 - **a.** $f_n + g_n \to f + g$ in measure.
 - **b.** $f_n g_n \to fg$ in measure if $\mu(X) < \infty$, but not necessarily if $\mu(X) = \infty$.
- **39.** If $f_n \to f$ almost uniformly, then $f_n \to f$ a.e. and in measure.
- **40.** In Egoroff's theorem, the hypothesis " $\mu(X) < \infty$ " can be replaced by " $|f_n| \le g$ for all n, where $g \in L^1(\mu)$."
- **41.** If μ is σ -finite and $f_n \to f$ a.e., there exist measurable $E_1, E_2, \ldots \subset X$ such that $\mu((\bigcup_1^\infty E_j)^c) = 0$ and $f_n \to f$ uniformly on each E_j .
- **42.** Let μ be counting measure on \mathbb{N} . Then $f_n \to f$ in measure iff $f_n \to f$ uniformly.
- **43.** Suppose that $\mu(X) < \infty$ and $f: X \times [0,1] \to \mathbb{C}$ is a function such that $f(\cdot,y)$ is measurable for each $y \in [0,1]$ and $f(x,\cdot)$ is continuous for each $x \in X$.
 - **a.** If $0 < \epsilon, \delta < 1$ then $E_{\epsilon,\delta} = \{x : |f(x,y) f(x,0)| \le \epsilon \text{ for all } y < \delta\}$ is measurable.
 - **b.** For any $\epsilon>0$ there is a set $E\subset X$ such that $\mu(E)<\epsilon$ and $f(\cdot,y)\to f(\cdot,0)$ uniformly on E^c as $y\to 0$.
- **44.** (**Lusin's Theorem**) If $f:[a,b]\to\mathbb{C}$ is Lebesgue measurable and $\epsilon>0$, there is a compact set $E\subset[a,b]$ such that $\mu(E^c)<\epsilon$ and f|E is continuous. (Use Egoroff's theorem and Theorem 2.26.)

- **45.** If (X_j, \mathcal{M}_j) is a measurable space for j = 1, 2, 3, then $\bigotimes_1^3 \mathcal{M}_j = (\mathcal{M}_1 \otimes \mathcal{M}_2) \otimes \mathcal{M}_3$. Moreover, if μ_j is a σ -finite measure on (X_j, \mathcal{M}_j) , then $\mu_1 \times \mu_2 \times \mu_3 = (\mu_1 \times \mu_2) \times \mu_3$.
- **46.** Let X = Y = [0, 1], $\mathcal{M} = \mathcal{N} = \mathcal{B}_{[0,1]}$, $\mu =$ Lebesgue measure, and $\nu =$ counting measure. If $D = \{(x, x) : x \in [0, 1]\}$ is the diagonal in $X \times Y$, then $\iint \chi_D d\mu d\nu$,

 $\iint \chi_D \, d\nu \, d\mu$, and $\int \chi_D \, d(\mu \times \nu)$ are all unequal. (To compute $\int \chi_D \, d(\mu \times \nu) = \mu \times \nu(D)$, go back to the definition of $\mu \times \nu$.)

- 47. Let X=Y be an uncountable linearly ordered set such that for each $x\in X$, $\{y\in X:y< x\}$ is countable. (Example: the set of countable ordinals.) Let $\mathcal{M}=\mathcal{N}$ be the σ -algebra of countable or co-countable sets, and let $\mu=\nu$ be defined on \mathcal{M} by $\mu(A)=0$ if A is countable and $\mu(A)=1$ if A is co-countable. Let $E=\{(x,y)\in X\times X:y< x\}$. Then E_x and E^y are measurable for all x,y, and $\iint \chi_E \,d\mu\,d\nu$ and $\iint \chi_E \,d\nu\,d\mu$ exist but are not equal. (If one believes in the continuum hypothesis, one can take X=[0,1] [with a nonstandard ordering] and thus obtain a set $E\subset [0,1]^2$ such that E_x is countable and E^y is co-countable [in particular, Borel] for all x,y, but E is not Lebesgue measurable.)
- **48.** Let $X=Y=\mathbb{N}, \ \mathcal{M}=\mathbb{N}=\mathfrak{P}(\mathbb{N}), \ \mu=\nu=\text{counting measure}.$ Define f(m,n)=1 if $m=n, \ f(m,n)=-1$ if $m=n+1, \ \text{and} \ f(m,n)=0$ otherwise. Then $\int |f| \ d(\mu \times \nu)=\infty$, and $\iint f \ d\mu \ d\nu$ and $\iint f \ d\nu \ d\mu$ exist and are unequal.
- **49.** Prove Theorem 2.39 by using Theorem 2.37 and Proposition 2.12 together with the following lemmas.
 - **a.** If $E \in \mathcal{M} \times \mathcal{N}$ and $\mu \times \nu(E) = 0$, then $\nu(E_x) = \mu(E^y) = 0$ for a.e. x and y. **b.** If f is \mathcal{L} -measurable and f = 0 λ -a.e., then f_x and f^y are integrable for a.e. x and y, and $\int f_x \, d\nu = \int f^y \, d\mu = 0$ for a.e. x and y. (Here the completeness of μ and ν is needed.)

50. Suppose (X, \mathcal{M}, μ) is a σ -finite measure space and $f \in L^+(X)$. Let

$$G_f = \{(x, y) \in X \times [0, \infty] : y \le f(x)\}.$$

Then G_f is $\mathcal{M} \times \mathcal{B}_{\mathbb{R}}$ -measurable and $\mu \times m(G_f) = \int f d\mu$; the same is also true if the inequality $y \leq f(x)$ in the definition of G_f is replaced by y < f(x). (To show measurability of G_f , note that the map $(x,y) \mapsto f(x) - y$ is the composition of $(x,y) \mapsto (f(x),y)$ and $(z,y) \mapsto z-y$.) This is the definitive statement of the familiar theorem from calculus, "the integral of a function is the area under its graph."

- **51.** Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be arbitrary measure spaces (not necessarily σ finite).
 - **a.** If $f: X \to \mathbb{C}$ is M-measurable, $g: Y \to \mathbb{C}$ is N-measurable, and h(x,y) =f(x)g(y), then h is $\mathcal{M} \otimes \mathcal{N}$ -measurable.
 - **b.** If $f \in L^1(\mu)$ and $g \in L^1(\nu)$, then $h \in L^1(\mu \times \nu)$ and $\int h d(\mu \times \nu) =$ $[\int f d\mu][\int g d\nu].$
- **52.** The Fubini-Tonelli theorem is valid when (X, \mathcal{M}, μ) is an arbitrary measure space and Y is a countable set, $\mathcal{N} = \mathcal{P}(Y)$, and ν is counting measure on Y. (Cf. Theorems 2.15 and 2.25.)

Exercises

- 53. Fill in the details of the proof of Theorem 2.41.
- **54.** How much of Theorem 2.44 remains valid if T is not invertible?
- **2.44 Theorem.** Suppose $T \in GL(n, \mathbb{R})$.
 - a. If f is a Lebesgue measurable function on \mathbb{R}^n , so is $f \circ T$. If $f \geq 0$ or $f \in L^1(m)$, then

(2.45)
$$\int f(x) dx = |\det T| \int f \circ T(x) dx.$$

b. If $E \in \mathcal{L}^n$, then $T(E) \in \mathcal{L}^n$ and $m(T(E)) = |\det T| m(E)$.

2.41 Theorem. If $f \in L^1(m)$ and $\epsilon > 0$, there is a simple function $\phi = \sum_{1}^{N} a_i \chi_{R_i}$, where each R_i is a product of intervals, such that $\int |f - \phi| < \epsilon$, and there is a continuous function g that vanishes outside a bounded set such that $\int |f-g| < \epsilon$.

55. Let $E = [0,1] \times [0,1]$. Investigate the existence and equality of $\int_E f \, dm^2$, $\int_0^1 \int_0^1 f(x,y) \, dx \, dy, \text{ and } \int_0^1 \int_0^1 f(x,y) \, dy \, dx \text{ for the following } f.$ **a.** $f(x,y) = (x^2 - y^2)(x^2 + y^2)^{-2}.$

b. $f(x,y) = (1-xy)^{-a}$ (a > 0).

c. $f(x,y) = (x-\frac{1}{2})^{-3}$ if $0 < y < |x-\frac{1}{2}|$, f(x,y) = 0 otherwise.

56. If f is Lebesgue integrable on (0,a) and $g(x) = \int_a^a t^{-1} f(t) dt$, then q is integrable on (0, a) and $\int_0^a g(x) dx = \int_0^a f(x) dx$.

57. Show that $\int_0^\infty e^{-sx}x^{-1}\sin x\,dx = \arctan(s^{-1})$ for s>0 by integrating $e^{-sxy}\sin x$ with respect to x and y. (It may be useful to recall that $\tan(\frac{\pi}{2}-\theta)=$ $(\tan \theta)^{-1}$. Cf. Exercise 31d.)

58. Show that $\int e^{-sx}x^{-1}\sin^2x\,dx=\frac{1}{4}\log(1+4s^{-2})$ for s>0 by integrating $e^{-sx}\sin 2xy$ with respect to x and y.

59. Let $f(x) = x^{-1} \sin x$.

a. Show that $\int_0^\infty |f(x)| dx = \infty$.

b. Show that $\lim_{b\to\infty} \int_0^b f(x) dx = \frac{1}{2}\pi$ by integrating $e^{-xy} \sin x$ with respect to x and y. (In view of part (a), some care is needed in passing to the limit as $b \to \infty$.)

60. $\Gamma(x)\Gamma(y)/\Gamma(x+y) = \int_0^1 t^{x-1}(1-t)^{y-1} dt$ for x,y>0. (Recall that Γ was defined in §2.3. Write $\Gamma(x)\Gamma(y)$ as a double integral and use the argument of the exponential as a new variable of integration.)

61. If f is continuous on $[0, \infty)$, for $\alpha > 0$ and $x \ge 0$ let

$$I_{\alpha}f(x) = \frac{1}{\Gamma(\alpha)} \int_0^x (x-t)^{\alpha-1} f(t) dt.$$

 $I_{\alpha}f$ is called the α th **fractional integral** of f.

a. $I_{\alpha+\beta}f = I_{\alpha}(I_{\beta}f)$ for all $\alpha, \beta > 0$. (Use Exercise 60.)

b. If $n \in \mathbb{N}$, $I_n f$ is an *n*th-order antiderivative of f.

- **62.** The measure σ on S^{n-1} is invariant under rotations.
- **63.** The technique used to prove Proposition 2.54 can also be used to integrate any polynomial over S^{n-1} . In fact, suppose $f(x) = \prod_{1}^{n} x_{j}^{\alpha_{j}}$ $(\alpha_{j} \in \mathbb{N} \cup \{0\})$ is a monomial. Then $\int f \, d\sigma = 0$ if any α_{j} is odd, and if all α_{j} 's are even,

$$\int f d\sigma = \frac{2\Gamma(\beta_1)\cdots\Gamma(\beta_n)}{\Gamma(\beta_1+\cdots+\beta_n)}, \text{ where } \beta_j = \frac{\alpha_j+1}{2}.$$

- **64.** For which real values of a and b is $|x|^a |\log |x||^b$ integrable over $\{x \in \mathbb{R}^n : |x| < \frac{1}{2}\}$? Over $\{x \in \mathbb{R}^n : |x| > 2\}$?
- **65.** Define $G: \mathbb{R}^n \to \mathbb{R}^n$ by $G(r, \phi_1, \dots, \phi_{n-2}, \theta) = (x_1, \dots, x_n)$ where

$$x_1 = r\cos\phi_1, \quad x_2 = r\sin\phi_1\cos\phi_2, \quad x_3 = r\sin\phi_1\sin\phi_2\cos\phi_3, \dots,$$

$$x_{n-1} = r\sin\phi_1\cdots\sin\phi_{n-2}\cos\theta, \quad x_n = r\sin\phi_1\cdots\sin\phi_{n-2}\sin\theta.$$

- **a.** G maps \mathbb{R}^n onto \mathbb{R}^n , and $|G(r,\phi_1,\ldots,\phi_{n-2},\theta)|=|r|.$
- **b.** det $D_{(r,\phi_1,\ldots,\phi_{n-2},\theta)}G = r^{n-1}\sin^{n-2}\phi_1\sin^{n-3}\phi_2\cdots\sin\phi_{n-2}$.
- **c.** Let $\Omega = (0, \infty) \times (0, \pi)^{n-2} \times (0, 2\pi)$. Then $G|\Omega$ is a diffeomorphism and $m(\mathbb{R}^n \setminus G(\Omega)) = 0$.
- **d.** Let $F(\phi_1,\ldots,\phi_{n-2},\theta)=G(1,\phi_1,\ldots,\phi_{n-2},\theta)$ and $\Omega'=(0,\pi)^{n-2}\times (0,2\pi)$. Then $(F|\Omega')^{-1}$ defines a coordinate system on S^{n-1} except on a σ -null set, and the measure σ is given in these coordinates by

$$d\sigma(\phi_1,\ldots\phi_{n-2},\theta)=\sin^{n-2}\phi_1\sin^{n-3}\phi_2\cdots\sin\phi_{n-2}\,d\phi_1\cdots d\phi_{n-2}\,d\theta.$$

- 8. $\nu \ll \mu$ iff $|\nu| \ll \mu$ iff $\nu^+ \ll \mu$ and $\nu^- \ll \mu$.
- **9.** Suppose $\{\nu_j\}$ is a sequence of positive measures. If $\nu_j \perp \mu$ for all j, then $\sum_1^\infty \nu_j \perp \mu$; and if $\nu_j \ll \mu$ for all j, then $\sum_1^\infty \nu_j \ll \mu$.
- 10. Theorem 3.5 may fail when ν is not finite. (Consider $d\nu(x)=dx/x$ and $d\mu(x)=dx$ on (0,1), or $\nu=$ counting measure and $\mu(E)=\sum_{n\in E}2^{-n}$ on \mathbb{N} .)
- 11. Let μ be a positive measure. A collection of functions $\{f_{\alpha}\}_{\alpha\in A}\subset L^1(\mu)$ is called **uniformly integrable** if for every $\epsilon>0$ there exists $\delta>0$ such that $|\int_E f_{\alpha}\,d\mu|<\epsilon$ for all $\alpha\in A$ whenever $\mu(E)<\delta$.
 - **a.** Any finite subset of $L^1(\mu)$ is uniformly integrable.
 - **b.** If $\{f_n\}$ is a sequence in $L^1(\mu)$ that converges in the L^1 metric to $f \in L^1(\mu)$, then $\{f_n\}$ is uniformly integrable.
- **12.** For j=1,2, let μ_j,ν_j be σ -finite measures on (X_j,\mathcal{M}_j) such that $\nu_j\ll\mu_j$. Then $\nu_1\times\nu_2\ll\mu_1\times\mu_2$ and

$$\frac{d(\nu_1 \times \nu_2)}{d(\mu_1 \times \mu_2)}(x_1, x_2) = \frac{d\nu_1}{d\mu_1}(x_1)\frac{d\nu_2}{d\mu_2}(x_2).$$

- 13. Let X=[0,1], $\mathcal{M}=\mathcal{B}_{[0,1]}$, m= Lebesgue measure, and $\mu=$ counting measure on \mathcal{M}
 - **a.** $m \ll \mu$ but $dm \neq f d\mu$ for any f.
 - **b.** μ has no Lebesgue decomposition with respect to m.
- **14.** If ν is an arbitrary signed measure and μ is a σ -finite measure on (X,\mathcal{M}) such that $\nu \ll \mu$, there exists an extended μ -integrable function $f:X \to [-\infty,\infty]$ such that $d\nu = f \, d\mu$. Hints:
 - **a.** It suffices to assume that μ is finite and ν is positive.
 - **b.** With these assumptions, there exists $E \in \mathcal{M}$ that is σ -finite for ν such that $\mu(E) \geq \mu(F)$ for all sets F that are σ -finite for ν .
 - c. The Radon-Nikodym theorem applies on E. If $F \cap E = \emptyset$, then either $\nu(F) = \mu(F) = 0$ or $\mu(F) > 0$ and $|\nu(F)| = \infty$.

Exercises

- **18.** Prove Proposition 3.13c.
- **19.** If ν , μ are complex measures and λ is a positive measure, then $\nu \perp \mu$ iff $|\nu| \perp |\mu|$, and $\nu \ll \lambda$ iff $|\nu| \ll \lambda$.
- **20.** If ν is a complex measure on (X, \mathcal{M}) and $\nu(X) = |\nu|(X)$, then $\nu = |\nu|$.
- **21.** Let ν be a complex measure on (X, \mathcal{M}) . If $E \in \mathcal{M}$, define

$$\mu_1(E) = \sup \left\{ \sum_{1}^{n} |\nu(E_j)| : n \in \mathbb{N}, E_1, \dots, E_n \text{ disjoint, } E = \bigcup_{1}^{n} E_j \right\},$$

$$\mu_2(E) = \sup \left\{ \sum_{1}^{\infty} |\nu(E_j)| : E_1, E_2, \dots \text{ disjoint, } E = \bigcup_{1}^{\infty} E_j \right\},$$

$$\mu_3(E) = \sup \left\{ \left| \int_E f \, d\mu \right| : |f| \le 1 \right\}.$$

DIFFERENTIATION ON EUCLIDEAN SPACE

Then $\mu_1 = \mu_2 = \mu_3 = |\nu|$. (First show that $\mu_1 \le \mu_2 \le \mu_3$. To see that $\mu_3 = |\nu|$, let $f = \overline{d\nu/d|\nu|}$ and apply Proposition 3.13. To see that $\mu_3 \le \mu_1$, approximate f by simple functions.)

Exercises

- 1. Prove Proposition 3.1.
- 2. If ν is a signed measure, E is ν -null iff $|\nu|(E)=0$. Also, if ν and μ are signed measures, $\nu \perp \mu$ iff $|\nu| \perp \mu$ iff $\nu^+ \perp \mu$ and $\nu^- \perp \mu$.
- 3. Let ν be a signed measure on (X, \mathcal{M}) .
 - **a.** $L^1(\nu) = L^1(|\nu|)$.
 - **b.** If $f \in L^1(\nu)$, $|\int f d\nu| \le \int |f| d|\nu|$.
 - **c.** If $E \in \mathcal{M}$, $|\nu|(E) = \sup\{|\int_E f \, d\nu| : |f| \le 1\}$.
- **4.** If ν is a signed measure and λ , μ are positive measures such that $\nu = \lambda \mu$, then $\lambda \geq \nu^+$ and $\mu \geq \nu^-$.
- 5. If ν_1, ν_2 are signed measures that both omit the value $+\infty$ or $-\infty$, then $|\nu_1 + \nu_2| \le |\nu_1| + |\nu_2|$. (Use Exercise 4.)
- **6.** Suppose $\nu(E)=\int f\,d\mu$ where μ is a positive measure and f is an extended μ -integrable function. Describe the Hahn decompositions of ν and the positive, negative, and total variations of ν in terms of f and μ .
- 7. Suppose that ν is a signed measure on (X, \mathcal{M}) and $E \in \mathcal{M}$. a. $\nu^+(E) = \sup\{\nu(F) : E \in \mathcal{M}, F \subset E\}$ and $\nu^-(E) = -\inf\{\nu(F) : F \in \mathcal{M}, F \subset E\}$
 - **b.** $|\nu|(E) = \sup\{\sum_{1}^{n} |\nu(E_j)| : n \in \mathbb{N}, E_1, \dots, E_n \text{ are disjoint, and } \bigcup_{1}^{n} E_j = E\}$

15. A measure μ on (X,\mathcal{M}) is called **decomposable** if there is a family $\mathcal{F} \subset \mathcal{M}$ with the following properties: (i) $\mu(F) < \infty$ for all $F \in \mathcal{F}$; (ii) the members of \mathcal{F} are disjoint and their union is X; (iii) if $\mu(E) < \infty$ then $\mu(E) = \sum_{F \in \mathcal{F}} \mu(E \cap F)$; (iv) if $E \subset X$ and $E \cap F \in \mathcal{M}$ for all $F \in \mathcal{F}$ then $E \in \mathcal{M}$.

a. Every σ -finite measure is decomposable.

~ (*) - m(*) - ~ or m(*) > ~ min | r(*)| - ~ o.

- **b.** If μ is decomposable and ν is any signed measure on (X, \mathcal{M}) such that $\nu \ll \mu$, there exists a measurable $f: X \to [-\infty, \infty]$ such that $\nu(E) = \int_E f \, d\mu$ for any E that is σ -finite for μ , and $|f| < \infty$ on any $F \in \mathcal{F}$ that is σ -finite for ν . (Use Exercise 14 if ν is not σ -finite.)
- **16.** Suppose that μ, ν are measures on (X, \mathcal{M}) with $\nu \ll \mu$, and let $\lambda = \mu + \nu$. If $f = d\nu/d\lambda$, then $0 \le f < 1$ μ -a.e. and $d\nu/d\mu = f/(1-f)$.

 $\int_E f d\mu = \int_E g d\nu$ for all $E \in \mathcal{N}$; if g' is another such function then $g = g' \nu$ -a.e.

(In probability theory, g is called the **conditional expectation** of f on \mathbb{N} .)

COMPLEX MEASURES

17. Let (X, \mathcal{M}, μ) be a σ -finite measure space, \mathcal{N} a sub- σ -algebra of \mathcal{M} , and $\nu = \mu | \mathcal{N}$. If $f \in L^1(\mu)$, there exists $g \in L^1(\nu)$ (thus g is \mathcal{N} -measurable) such that

- **3.13 Proposition.** Let ν be a complex measure on (X, \mathcal{M}) .
 - a. $|\nu(E)| \le |\nu|(E)$ for all $E \in \mathcal{M}$.
 - b. $\nu \ll |\nu|$, and $d\nu/d|\nu|$ has absolute value $1 |\nu|$ -a.e.
- c. $L^1(\nu) = L^1(|\nu|)$, and if $f \in L^{1\frac{1}{2}}(\nu)$, then $|\int f d\nu| \le \int |f| d|\nu|$.

Exercises

- **22.** If $f \in L^1(\mathbb{R}^n)$, $f \neq 0$, there exist C, R > 0 such that $Hf(x) \geq C|x|^{-n}$ for |x| > R. Hence $m(\{x : Hf(x) > \alpha\}) \geq C'/\alpha$ when α is small, so the estimate in the maximal theorem is essentially sharp.
- 23. A useful variant of the Hardy-Littlewood maximal function is

$$H^*f(x) = \sup\left\{\frac{1}{m(B)}\int_B |f(y)|\,dy: B \text{ is a ball and } x\in B\right\}.$$

Show that $Hf \leq H^*f \leq 2^n Hf$.

- **24.** If $f \in L^1_{loc}$ and f is continuous at x, then x is in the Lebesgue set of f.
- **25.** If E is a Borel set in \mathbb{R}^n , the **density** $D_E(x)$ of E at x is defined as

$$D_E(x) = \lim_{r \to 0} \frac{m(E \cap B(r, x))}{m(B(r, x))}$$

whenever the limit exists.

- **a.** Show that $D_E(x)=1$ for a.e. $x\in E$ and $D_E(x)=0$ for a.e. $x\in E^c$.
- **b.** Find examples of E and x such that $D_E(x)$ is a given number $\alpha \in (0,1)$, or such that $D_E(x)$ does not exist.
- **26.** If λ and μ are positive, mutually singular Borel measures on \mathbb{R}^n and $\lambda + \mu$ is regular, then so are λ and μ .