Exercises

1. A family of sets R C P(X) is called a ring if it is closed under finite unions
and differences (i.e., if Ey,..., E, € R, then |J] E; € R, and if E, F € R, then
E\ F € R). Aring that is closed under countable unions is called a o-ring.
a. Rings (resp. o-rings) are closed under finite (resp. countable) intersections.
b. If R is aring (resp. o-ring), then R is an algebra (resp. o-algebra) iff X € R.
c. f Risao-ring, then {E C X : E € Ror E° € R} is a o-algebra.
d. IfRisao-ring,then {E C X : ENF € Rforall F € R} is a c-algebra.

2. Complete the proof of Proposition 1.2.

3. Let M be an infinite o-algebra.
a. M contains an infinite sequence of disjoint sets.
b. card(M) > ¢.

4. An algebra A is a o-algebra iff A is closed under countable increasing unions
(e, if {E;}°C Aand Ey C Ey C -+, then JT° E; € A).

5. If M is the o-algebra generated by &, then M is the union of the c-algebras
generated by F as F ranges over all countable subsets of €. (Hint: Show that the
latter object is a o-algebra.)

1.9 Theorem. Suppose that (X, M, p) is a measure space. Let N = {N €M:
u(N) =0} andM = {EBF : E € Mand F C N for some N € N}. Then M is
a o-algebra, and there is a unique extension [z of | 1o a gomp!ete measure on M.

Proof. Since M and N are closed under countable unions, sois M. f EUF € M
where E € Mand F' € N € N, we can assume that EN N = @ (otherwise, replace
Fand Nby F\ Eand N\ E). Then EUF = (EUN)N(N°UF), so
(EUF) = (EUN)U(N\F). Bu(EUN)® € Mand N\ F C N, so that

(E'UF)® e M. Thus M is a ggalgebra.

If FUF € M as above, we set i( U F) = u(F). This is well defined,
since if £y UF, = E, UF; where F; C N; € N, then E; C E; U Ny and so
p(Er) < p(E2) + u(N2) = p(Ea), and likewise p(E2) < p(Er). It is_easily
verified that 77 is a complete measure on M, and that 7z is the only measure on M that

extends g; details are left to the reader (Exercise 6).

6. Complete the proof of Theorem 1.9.

7. If pr, ..o, piy, are measures on (X, M) and ay, ..., a, € [0,00), then > a;u;
is a measure on (X, M).

8. If (X,M, ) is a measure space and {E;}3° C M, then p(liminf E;)
liminf pu(E;). Also, p(limsup E;) > limsup u(E;) provided!tlhat w(UT E;j)
o0,

9. If(X,M, p)isameasurespaceand £, F' € M, then u(E)+p(F) = p(F U F)+
p(ENF).

10. Given a measure space (X, M, i) and E € M, define pp(A) = p(A N E) for
A € M. Then ug is a measure.

<
<

11. A finitely additive measure g is a measure iff it is continuous from below as in
Theorem 1.8c. If u(X) < oo, p is a measure iff it is continuous from above as in
Theorem 1.8d.

12. Let (X, M, ) be a finite measure space.
a. If B, F € Mand u(EAF) = 0, then pu(F) = p(F).
b. Say that £ ~ F if u(EAF) = 0; then ~ is an equivalence relation on M.
c. For E,F € M, define p(E, F) = p(EAF). Then p(E,G) < p(E, F) +
p(F, G), and hence p defines a metric on the space M/ ~ of equivalence classes.

13. Every o-finite measure is semifinite.

14. If p1 is a semifinite measure and p(E) = oo, for any C' > 0 there exists F' C E
with C' < pu(F) < co.

15. Given a measure p on (X, M), define pg on M by po(E) = sup{u(F) : F C
E and p(F) < oo}

a. o is a semifinite measure. It is called the semifinite part of .

b. If 11 is semifinite, then g = po. (Use Exercise 14.)



c. There is a measure v on M (in general, not unique) which assumes only the
values 0 and oo such that u = g + v.

16. Let (X, M, 1) be a measure space. A set £ C X is called locally measurable
if EN A € M for all A € M such that u(A) < oo. Let M be the collection of all
locally measurable sets. Clearly M C JTf[; ifM = ff[, then u is called saturated.

a. If p is o-finite, then p is saturated.

b. Misa o-algebra.

¢. Define 7i on M by fi(E) = u(E) if E € M and fi(E) = oo otherwise. Then

i is a saturated measure on M, called the saturation of -

d. If p is complete, so is .

e. Suppose that p is semifinite. For E € M, define p(E) = sup{u(A) : A €

M and A C E}. Then y is a saturated measure on M that extends p.

f. Let X1, X5 be disjoint uncountable sets, X = X;U X5, and M the o-algebra
of countable or co-countable sets in X. Let up be counting measure on P(X),
and define £ on M by u(E) = po(E N X;). Then p is a measure on M,
M= P(X), and in the notation of parts (c) and (e), & # p.

Exercises

17. If p* is an outer measure on X and {A;}{° is a sequence of disjoint p*-
measurable sets, then p*(E N (7" 4;)) = 37 p*(EN A;) forany E C X.

18. Let A € P(X) be an algebra, A, the collection of countable unions of sets
in A, and A; the collection of countable intersections of sets in A,. Let pg be a
premeasure on A and p* the induced outer measure.
a. Forany E C X and € > O there exists A € A, with E C A and p*(A) <
p(E)+e.
b. If u*(E) < oo, then E is p*-measurable iff there exists B € A,s with E C B
and u*(B\ F) =0.
c. If pg is o-finite, the restriction p*(E) < oo in (b) is superfluous.

19. Let p* be an outer measure on X induced from a finite premeasure pp. If
E c X, define the inner measure of F to be u.(E) = po(X) — p*(E£°). Then E
is p*-measurable iff p*(F) = p.(E). (Use Exercise 18.)

20. Let p* be an outer measure on X, M* the o-algebra of p*-measurable sets,
7 = p*|M*, and g the outer measure induced by 7 as in (1.12) (with & and M*
replacing g and A).

a. If E C X, we have p*(E) < pu*(E), with equality iff there exists A € M*

with A D F and p*(A) = p*(E).

b. If 4* is induced from a premeasure, then p* = p+. (Use Exercise 18a.)

¢. If X = {0,1}, there exists an outer measure x* on X such that p* # pt.

21. Let p* be an outer measure induced from a premeasure and 7 the restriction of
1™ to the p2*-measurable sets. Then Z is saturated. (Use Exercise 18.)

[I.19 Theorem. If E' C R, the following are equivalent.
a EecM,
b. E =V \ N, whereV is a Gs set and pn(N7) = 0.
¢. B = H\UNswhere H isan Fy set and u{Na) = 0.

1.20 Proposition. [f E € M,, and u(E) < oo, then for every € > 0 there is a set A
that is a finite union of open intervals such that f(EAA) < e

1.22 Proposition. Let C be the Cantor set.
a. C'is compact, nowhere dense, and totally disconnected (i.e., the only connected
subsets of C are single points). Moreover, C has no isolated points.

b. m(C)=0.
¢ card(C) =c

22, Let (X, M, u) be a measure space, u* the outer measure induced by x according

to (1.12), M* the o-algebra of x*-measurable sets, and @ = p*|M*.
a. If pu is o-finite, then & is the completion of u. (Use Exercise 18.)

b. In general, [ is the saturation of the completion of u. (See Exercises 16 and

21.)

23. Let A be the collection of finite unions of sets of the form (a,b] N Q where

- <a<b<oo.
a. A is an algebra on Q. (Use Proposition 1.7.)
b. The o-algebra generated by A is P(Q).

c. Define 119 on A by p9(2) = 0 and p9(A) = oo for A # @. Then pg is a
premeasure on A, and there is more than one measure on P(Q) whose restriction

to A is up.

24. Let . be a finite measure on (X, M), and let 1* be the outer measure induced by

. Suppose that E' C X satisfies p*(E) = p*(X) (but not that E € M).
a. IfA,B e Mand ANE = BN E, then u(A) = u(B).

b. Let Mg = {AN E : A € M}, and define the function v on Mg defined by
v(ANE) = u(A) (which makes sense by (a)). Then Mg is a o-algebra on E

and v-is-a measure on Mg-.

Exercises
25. Complete the proof of Theorem 1.19.
26. Prove Proposition 1.20. (Use Theorem 1.18.)

27. Prove Proposition 1.22a. (Show that if 2,y € C and = < y, there exists z ¢ C
suchthatx < z < y.)

28. Let F be increasing and right continuous, and let iy be the associated measure.
Then pp({a}) = F(a) - F(a=), pr([a,b)) = F(b—) — F(a—), pr([a,b]) =
F(b) — F(a—), and ur((a, b)) = F(b—) — F(a).
29. Let F be a Lebesgue measurable set.
a. If E C N where N is the nonmeasurable set described in §1.1, then m(E) =
0.
b. If m(E) > 0, then E contains a nonmeasurable set. (It suffices to assume
E c [0,1]. In the notation of §1.1, E = | J,. . g EN N;.)

30. If E € L and m(E) > 0, for any o < 1 there is an open interval I such that
m(ENT)>am(l).

3. IfE € Land m(E) > 0,theset E — E = {r —y : z,y € E} contains an
interval centered at 0. (If I is as in Exercise 30 with o > %. then £ — F contains
(=3m(I), 3m(I)).)
32. Suppose {a;}$° C (0,1).
a. [1°(1—ay) > 0iff Y77 @ < oco. (Compare )% log(1l — a;j) to 3 a;.)
b. Given S € (0, 1), exhibit a sequence {«; } such that [[;°(1 — a;) = 3.
33. There exists a Borel set A C [0,1] such that 0 < m(ANT) < m(I) for every

subinterval [ of [0, 1]. (Hint: Every subinterval of [0, 1] contains Cantor-type sets of
positive measure.)

Ch. 2.



In Exercises 1-7, (X, M) is a measurable space.

1. Letf:X — RandY = f~1(R). Then f is measurable iff f~1({—o00}) € M,
f71({oo}) € M, and f is measurable on Y.

2. Suppose f,g: X — R are measurable.
a. fg is measurable (where 0 - (+oc) = 0).
b. Fix a € R and define h(z) = a if f(z) = —g(z) = +oo and h(z) =
f(z) + g(z) otherwise. Then h is measurable.

3. If{f.}is asequence of measurable functions on X, then {z : lim f, (z) exists}
is a measurable set.

4. Iff: X - Rand f~1((r,00]) € M foreach r € @, then f is measurable.

5. X = AU B where A, B € M, a function f on X is measurable iff f is
measurable on 4 and on B.

6. The supremum of an uncountable family of measurable R-valued functions on
X can fail to be measurable (unless the o-algebra M is very special).

7. Suppose that for each a € R we are given a set £, € M such that £, C Ej
whenever a < 8, | J,cg Ba = X, and (g Eo = @. Then there is a measurable
function f : X — R such that f(z) < e on E, and f(z) > a on Ef for every a.
(Use Exercise 4.)

A e a At o

8. If f:R — R is monotone, then f is Borel measurable.

9. Let f:[0,1] — [0, 1] be the Cantor function (§1.5), and let g(z) = f(x) + z.

a. g is a bijection from [0, 1] to [0, 2], and h = g~ is continuous from [0,2] to

[0,11.
b. If C is the Cantor set, m(g(C)) = 1.

¢. By Exercise 29 of Chapter 1, g(C) contains a Lebesgue nonmeasurable set

A. Let B =g~!(A). Then B is Lebesgue measurable but not Borel.

8. If f: R — R is monotone, then f is Borel measurable.

9. Let f:[0,1] — [0,1] be the Cantor function (§1.5), and let g(z) = f(z) + =.
is continuous from [0,2] to

a. g is a bijection from [0, 1] to [0,2], and h = g~!

[0,1].
b. If C is the Cantor set, m(g(C)) = 1.

c¢. By Exercise 29 of Chapter 1, g(C') contains a Lebesgue nonmeasurable set

A. Let B = g~1(A). Then B is Lebesgue measurable but not Borel.

Exercises
12. Prove Proposition 2.20. (See Proposition 0.20, where a special case is proved.)

13. Suppose {fn,} C L*, f, — [ pointwise, and [ f = lim [ f, < co. Then
[z f =1lim [ fn forall E € M. However, this need notbe true if [ f =lim [ f, =

Q.

14. If f € L*,let \(E) = [ f dp for E € M. Then A is a measure on M, and for
any g € L*, [ gd\ = [ fgdpu. (First suppose that g is simple.)

15. If {fn} C L™, f, decreases pointwise to f,and [ f; < oo, then [ f =lim [ f,.

16. If f € L* and [ f < oo, for every € > 0 there exists E € M such that
WE) <coand [, f> ([ f) -«

17. Assume Fatou’s lemma and deduce the monotone convergence theorem from it.

Exercises

18. Fatou’s lemma remains valid if the hypothesis that f,, € Lt is replaced by the
hypothesis that f, is measurable and f, > —g where g € L+ N L. What is the

analogue of Fatou’s lemma for nonpositive functions?

19. Suppose {f,} C L'(y) and f, — f uniformly.
a. If u(X) < oo, then f € L' (p) and [ fn — [ f.
b. If u(X) = oo, the conclusions of (a) can fail. (Find examples on R with
Lebesgue measure.)

20. (A generalized Dominated Convergence Theorem) If ., gn, f,9 € L', fn — f
and gn — gae., [fu| < gn,and [ g, — [ g, then [ fn — [ f. (Rework the proof
of the dominated convergence theorem.)

21. Suppose f,, f € L' and f, — fae. Then [|fn — f| — Oiff [ [fa] = [|f].
(Use Exercise 20.)

22. Let p be counting measure on N. Interpret Fatou’s lemma and the monotone and
dominated convergence theorems as statements about infinite series.

23. Given a bounded function f : [a,b] — R, let

H(z) = é%mf‘;&ﬁf(m’ h(z) = }*i%mi‘;,fgf(y)‘

2.20 Proposition. If f € Lt and [ f < oo, then {z : f(z) = oo} is a null set and
{z: f(z) > 0} is o-finite.

The proof is left to the reader (Exercise 12).



23. Given a bounded function f : [a,b] — R, let

H(z)=1lim su h(z) = lim inf 3
@) = fim sup J0),  ble)=Jim inf )
Prove Theorem 2.28b by establishing the following lemmas:
a. H(z) = h(z) iff f is continuous at .
b. In the notation of the proof of Theorem 2.28a, H = G ae. and h = ¢
—=b
a.e. Hence H and h are Lebesgue measurable, and f[a‘bl Hdm = 1,(f) and

f[u,b] hdm = lg(f}

24. Let (X, M, ;1) be a measure space with (X) < oo, and let (X, M, Tz) be its
completion. Suppose f : X — R is bounded. Then f is M-measurable (and
hence in L!(f)) iff there exist sequences {¢, } and {1, } of M-measurable simple
functions such that ¢,, < f < %, and f Yn — ¢n)dp < n~L. In this case,

lim [ ¢ dp = lim [ ¥ du = [ f dE.
25, Let f(z) = 27 Y2 if 0 < z < 1, f(z) = O otherwise. Let {r,}$° be an
enumeration of the rationals, and set g(z) = Y7 27" f(z — ).

a. g € L1(m), and in particular g < oo a.e.

b. g is discontinuous at every point and unbounded on every interval, and it
remains so after any modification on a Lebesgue null set.

c. g < coae., but g2 is not integrable on any interval.

26. If f € L'(m) and F(z) = [*__ f(t) dt, then F is continuous on R.

27, Let fo(z) =ae """ = be‘”bI where 0 <a <b.
a. 37 Jo |fl m)ldfs =
b. 3°7° fo fo(z)dz = 0
SN A e ([0, 00), m), and fom So1 falz) dz =log(b/a).
28. Compute the following limits and justify the calculations:
a. limp—oo [y (1 + (z/n)) " sin(z/n) dz.
b. lim, o fiy (1 4+ na2)(1 + 22)~" dz.
¢ limpoo [y msin(z/n)[z(1 + 22)] 7! dz.
d. limy_eo [, n(1 + n?2%)~1 dz. (The answer depends on whether a > 0,
a = 0,0r a < 0, How does this accord with the various convergence theorems?)

29. Show that [~ a"e~®dz = n! by differentiating the equation [~ e~** dz =
A oo o _12 o n R .

1/t. Similarly, sho:v that [° z°"e™* dx = (2n)!y/m/4™n! by differentiating the

equation ffom e~ dr = /7 /t (see Proposition 2.53).

30. Show that limy_ o [y 2"(1 — k=1z)* dz = nl.

31. Derive the following formulas by expanding part of the integrand into an infinite
series and justifying the term-by-term integration. Exercise 29 may be useful. (Note:
In (d) and (e), term-by-term integration works, and the resulting series converges,
only for a > 1, but the formulas as stated are actually valid for all a > 0.)

a. Fora >0, [%_e™* cosazdz = \/me~*"/4,

b. Fora > —1, fo (1-z)"togzdz =) "(a+ k)2

c. Fora>1, [[7z% I(e —1)~tdz =T(a){(a), where {(a) =D 1" n
d. Fora > 1, [[* e™%®z~!sinz dz = arctan(a™?).

e. Fora > 1, [~ e=®Jy(z) dz = (s? + 1)~1/2, where
Jo(z) = 357 (—1)"z?™/4™(n!)? is the Bessel function of order zero.

32. Suppose p(X) < oo. If f and g are complex-valued measurable functions on

X, define
Tl
p(f.9) —/md#-

Then p is a metric on the space of measurable functions if we identify functions that
are equal a.e., and f, — f with respect to this metric iff f,, — f in measure.

33. If f, > 0and f, — f in measure, then [ f < liminf [ f,.

34. Suppose |fn| < g € L' and f,, — f in measure.

a. [ f=Lm]f,.
b. fo — fin L.

35. fn — f in measure iff for every € > 0 there exists N € N such that u({z
|fa(z) — f(z)| = €}) < eforn > N.

36. If u(En) < oo for n € Nand xg, — f in L', then f is (a.e. equal to) the
characteristic function of a measurable set.



37. Suppose that f,, and f are measurable complex-valued functionsand ¢ : C — C.
a. If ¢ is continuous and f,, — f a.e.,thengo f,, — ¢o fae.
b. If ¢ is uniformly continuous and f,, — f uniformly, almost uniformly, or
in measure, then ¢ o f,, — ¢ o f uniformly, almost uniformly, or in measure,
respectively.
¢. There are counterexamples when the continuity assumptions on ¢ are not
satisfied.

38. Suppose f,, — f in measure and g, — g in measure.
a. fn+gn — f+ g in measure.
b. fngn — fg in measure if (X)) < oo, but not necessarily if pu(X) = oo.

39. If f, — f almost uniformly, then f,, — f a.e. and in measure.

40. In Egoroff’s theorem, the hypothesis “u(X) < co” can be replaced by “|fn| < g
for all n, where g € L*(p).”

41. If p is o-finite and f,, — f a.e., there exist measurable Fy, Es,... C X such
that u((U7" E;)¢) = 0and f, — f uniformly on each E;.

42. Let i be counting measure on N. Then f,, — f in measureiff f,, — f uniformly.

43. Suppose that u(X) < coand f : X x [0,1] — C s a function such that f(-, y)
is measurable for each y € [0,1] and f(z,-) is continuous for each z € X.
a. If0 <e6 <1lthen E 5 = {z: |f(z,y) — f(z,0)] < eforally < &} is
measurable.
b. Forany € > O there is aset E C X such that u(F) < e and f(-,y) — f(-,0)
uniformly on E°asy — 0.

44. (Lusin’s Theorem) If f : [a,b] — Cis Lebesgue measurable and € > 0, there is
a compact set E C [a, b] such that u(E°) < eand f|E is continuous. (Use Egoroff’s
theorem and Theorem 2.26.)

Exercises

45. If (X;,M;) is a measurable space for j = 1,2, 3, then @ M; = (M; @ M) ®

Ms. Moreover, if p; is a o-finite measure on (X;, M;), then pu1 X po X ps3

(11 X p2) X pa.

46. Let X =Y = [0,1], M = N = Byg 1}, 4 = Lebesgue measure, and v = counting
measure. If D = {(z,z) : z € [0, 1]} is the diagonal in X X Y, then [[ xp dudv,

Jf xpdvdp, and [ xpd(p x v) are all unequal. (To compute [ xpd(p x v) =
p % (D), go back to the definition of p x 1..)

47. Let X =Y be an uncountable linearly ordered set such that for each = € X,
{y € X : y < z} is countable. (Example: the set of countable ordinals.) Let
M = N be the o-algebra of countable or co-countable sets, and let u = » be defined
on M by pu(A) = 0if A is countable and p(A) = 1 if A is co-countable. Let
E = {(z,y) € X x X : y < z}. Then E, and EY are measurable for all z,y,
and [[ xpdpdv and [ xg dvdp exist but are not equal. (If one believes in the
continuum hypothesis, one can take X = [0, 1] [with a nonstandard ordering] and
thus obtain a set £ C [0, 1] such that E, is countable and £Y is co-countable [in
particular, Borel] for all z, y, but £ is not Lebesgue measurable.)

48. Let X =Y = N, M = N = P(N), p = v = counting measure. Define
fltm,n) =1lifm=mn, f(m,n) = =1if m =n+1, and f(m,n) = 0 otherwise.
Then [|f|d(p x v) =o0,and [[ fdudvand [[ fdvduexist and are unequal.

49. Prove Theorem 2.39 by using Theorem 2.37 and Proposition 2.12 together with
the following lemmas.
a. If £ e MxNand px v(E) =0, then v(E;) = p(EY) = 0forae. zand y.
b. If f is L-measurable and f = 0 A-a.e., then f; and f¥ are integrable for a.e.
zandy,and [ f; dv = [ f¥dp = Oforae. z and y. (Here the completeness of
e and v is needed.)



50. Suppose (X, M, u) is a o-finite measure space and f € LT (X). Let
Gy ={(z,y) € X x[0,00] : y < f(2)}.

Then Gy is M x Bg-measurable and o x m(Gys) = [ f dp; the same is also true
if the inequality y < f(z) in the definition of G is replaced by y < f(z). (To
show measurability of G ¢, note that the map (z,y) — f(x) — y is the composition
of (z,y) — (f(z),y) and (z,y) — 2z — y.) This is the definitive statement of the
familiar theorem from calculus, “the integral of a function is the area under its graph.”

51. Let (X,M, p) and (Y,N,v) be arbitrary measure spaces (not necessarily o-
finite).
a. If f: X — C is M-measurable, g : ¥ — C is N-measurable, and h(z,y) =
f(z)g(y), then h is M ® N-measurable.
b. If f € L'(u) and g € L (v), then h € L*(u x v) and [hd(p x v) =
[ § dullf g v

52, The Fubini-Tonelli theorem is valid when (X, M, p) is an arbitrary measure
space and Y is a countable set, N = P(Y'), and v is counting measure on Y. (Cf.
Theorems 2.15 and 2.25.)

Exercises
53. Fill in the details of the proof of Theorem 2.41.

54, How much of Theorem 2.44 remains valid if T is not invertible?

2.44 Theorem. Suppose T € GL(n,R).
a. If [ is a Lebesgue measurable function on R™, sois foT. If f > 0 or
f € L(m), then

(2.45) f f(z)dz = | det T)| f foT(x)dx

b IfE € £7, then T(E) € L™ and m(T(E)) = | det Tm(E).

2.41 Theorem. Iff € L'(m) and e > 0, there is a simple function ¢ = Zf @5XR;»
where each R; is a product of intervals, such that [ |f — ¢| < € and there is a
continuous function g that vanishes outside a bounded set such that [ |f — g| < e.

55. Let £ = [0,1] x [0,1]. Investigate the existence and equality of [ fdm?,
jol jol f(z,y)dzdy, and fDI Jol f(z,y) dy dx for the following f.

a f(z,y) = (2% —y*)(=® +4°) 2

b. f(z,y)=(1 —my)‘a (a > 0).

e flz,y)=(z-HPif0<y<|z -1 f(:c, y) = 0 otherwise.

56. If f is Lebesgue mtegrable on (0,a) and g(z f t=1f(t)dt, then g is

integrable on (0, a) and fU zr)dr = fo flz)dz

57. Show that [;° e **z~lsinzdz = arctan(s'l) for s > 0 by integrating
e~ ¥ sinz with respect to z and y. (It may be useful to recall that tan(§ — @) =
(tan8) 1. Cf. Exercise 31d.)

58. Show that [e~**z~'sin*zdx = 1log(l + 4s72) for s > 0 by integrating
e~ %" sin 2zy with respect to x and y.

59. Let f(z) = 2~ !sinw.
a. Show that [ |f(z)|dz =

b. Show that limp—, fo r)dr = -r by integrating e~*Y sin x with respect
to z and y. (In view of part (a) some care is needed in passing to the limit as
b— o0.)

60. I'(z)l'(y)/T(z+y) = fﬂ t*=1(1 —¢)¥~1dt for z,y > 0. (Recall that T was
defined in §2.3. Write I'(z)I'(y) as a double integral and use the argument of the
exponential as a new variable of integration.)

61. If f is continuous on [0, 00), for @ > 0 and = > 0 let

1
')

@) = s [ @- 027 )
0
I, [ is called the ath fractional integral of f.
a. Ioigf = Ia(Igf) forall o, 8 > 0. (Use Exercise 60.)
b. If n € N, I, f is an nth-order antiderivative of f.



62. The measure ¢ on S™~! is invariant under rotations.

63. The technique used to prove Proposition 2.54 can also be used to integrate any
polynomial over $”~'. In fact, suppose f(z) = [} 2]’ (a; € NU{0}) is a
monomial. Then [ fdo = 0if any a; is odd, and if all e;’s are even,
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64. For which real values of a and b is |z|*|log |z ] integrable over {z € R" :
|z| < 1}? Over {z € R : [z| > 2}?

65. Define G : R™ — R" by G(r, ¢1,. .., dn-2,8) = (21,...,2,) where

T1 =7TC08¢), Ty =TSN cosds, T3z = 7sing;singdscosds,...,
Tp_1 =7rsing; - -sin¢g,_ocosf, x, =rsing; --sin¢p,_ssinb.

a. G maps R™ onto R™, and |G(r, ¢1, ..., Ppn—2,0)| = |7|.

b. det Dy 4, .. 4._2.00G = P lgin® 2 ¢y sin™ 3 g - - - Sin Pr_s.

¢ Let Q = (0,00) x (0,m)"2 x (0,27). Then G|Q is a diffeomorphism and
m(R™\ G(Q)) =0.

d. Let F(¢1,...,¢0n-2,0) = G(1,¢1,...,Pn-2,8) and Q' = (0,m)""2 x
(0,27). Then (F|Q')~! defines a coordinate system on S™~! except on a o-null
set, and the measure ¢ is given in these coordinates by

do(¢r,... dn—2,0) =sin" 2 ¢, sin" 3¢y .- - singp,_yd, - - - depp_o db.

Exercises

8. vepifffy| < piffrt € pandv™ < p.

9. Suppose {v;} is a sequence of positive measures. If v; L p for all j, then
S vy L opsand if vy < pforall j, then Y17 v; < p.

10. Theorem 3.5 may fail when v is not finite. (Consider dv(x) = dz/x and
dy(x) = dz on (0, 1), or v = counting measure and p(E) =37 27" on N.)

11. Let g be a positive measure. A collection of functions {fa}aca C L(n)
is called uniformly integrable if for every ¢ > 0 there exists § > 0 such that
| [5 fadp| < eforall o € A whenever u(E) < 6.

a. Any finite subset of L!(x) is uniformly integrable.

b. If {f.} is a sequence in L' (i) that converges in the L' metric to f € L' (p).

then {f,,} is uniformly integrable.

12. For j = 1,2, let t;, v; be o-finite measures on (X;, M;) such that v; < p;.
Then vy X vy <& py X pg and

d(vy X va) a‘ dig
—_—(ry,r 1
d(#lX}LE)( 1 2) ( )dp. ( )
3L [Lf 2 = [ 1]} 0 = B m= Lebesgue measure, and 4 = counting measure
on M.
a. m < pbutdm # fduy forany f.
b. p has no Lebesgue decomposition with respect to m.

14. If v is an arbitrary signed measure and p is a o-finite measure on (X, M) such
that v < p, there exists an extended p-integrable function f : X — [—o0, oc] such
that dv = f du. Hints:

a, It suffices to assume that y is finite and v is positive.

b. With these assumptions, there exists £ € M that is o-finite for  such that

p(E) = p(F) for all sets F that are o-finite for v.
¢. The Radon-Nikodym theorem applies on E. If F'N E = @, then either
v(F) = p(F)=0o0ru(F) > 0and [v(F)| = 0

Exercises

18. Prove Proposition 3.13c.

19. If v, p are complex measures and ) is a positive measure, then v L piff |v| L |y,

and v << Xiff [u| < A
20. If v is a complex measure on (X, M) and »(X) = |v|(X), then v = |v|.
21. Let v be a complex measure on (X, M). If E € M, define

m(E) = sup{i |[v(Ej)| :n €N, Ey, ..., E, disjoint, E = CJ Ej},
1 1

p2(E) = sup{z v(E;)| : By, Ea,... disjoint, E = | J Ej},
1 1

us(E) =sup{\fEfdp| Af1<1).

Exercises

1. Prove Proposition 3.1.

measures, v L piff |v| L piffvt L pandw™ L p.

3. Letw be asigned measure on (X, M).
a. L'(v) = Ll{]v|)
b. If f € LY(w), | [ fdv| < [|f|d|v].
c. fEeM, v|(E)=sup{| [y fdv|:|f] <1}

4. If v is a signed measure and A, p are positive measures such that v = A — p,

then A > vt andp > v,

5. Ifu, vp are signed measures that both omit the value +oc or —oo, then |v 42| <

|1] + |v2]. (Use Exercise 4.)

6. Suppose v(E) = [ fdp where p is a positive measure and f is an extended
p-integrable function. Describe the Hahn decompositions of » and the positive,

negative, and total variations of v in terms of f and .

7. Suppose that v is a signed measure on (X, M) and E € M.

a. v (E) =sup{v(F): FeM, F C E} and v~ (E)
M, F C E}.

b. |V|(E) =sup{} 7 |v(E;)| : n € N, E,..., E, are disjoint, and |J} E; =

ey e g e L B R

15. A measure p on (X, M) is called decomposable if there is a family F € M with
the following properties: (i) u(F) < oo for all F' € F; (ii) the members of F are
disjoint and their union is X; (iii) if u(E) < oo then u(E) = Y~ pegpu(E N F); (iv)
if EC Xand ENF € Mforall F € Fthen £ € M,
a. Every o-finite measure is decomposable.
b. If 1 is decomposable and v is any signed measure on (X, M) such that v < p,
there exists a measurable f : X — [—o0, oc] such that v(E) = [}, f du for any
E that is o-finite for p, and | f| < oo on any F' € ¥ that is o-finite for v. (Use
Exercise 14 if v is not o-finite.)

16. Suppose that i, v are measures on (X, M) with v < p, and let A = p + v. If
f=dv/d\ then0 < f < 1p-ae. anddv/du = f/(1 - f).

DIFFERENTIATION ON EUCLIDEAN SPACE

Then p1 = ps = uz = |v|. (First show that pu; < o < u3. To see that pz =

let f = dv/d|v| and apply Proposition 3.13. To see that us < 4, approximate f by

simple functions.)
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17. Let (X, M, p) be a o-finite measure space, N a sub-o-algebra of M, and v =
w|N. If f € L'(p), there exists g € L'(v) (thus g is N-measurable) such that
Jp fdu = [pgdv forall E € N; if ¢’ is another such function then g = ¢’ v-a.e.
(In probability theory, g is called the conditional expectation of f on N.)

3.13 Proposition. Let v be a complex measure on (X, M).
a |v(E)| < |v|(E) foral E € M.
b. v < |v|, and dv/d|v| has absolute value 1 |v|-a.e.
c. LY(v)=L(|v|), andif f € Ll%v), then | [ fdv| < [|f|d|v].

Exercises

22. If f € LY(R™), f # 0, there exist C, R > 0 such that H f(z) > Clz|™" for
|z| > R. Hence m({z : H f(z) > a}) > C’/a when « is small, so the estimate in

the maximal theorem is essentially sharp.

23. A useful variant of the Hardy-Littlewood maximal function is

H* f(x) =sup{ﬁ[ﬂ|f(y)|dy:Bisaballand:ve B}‘

Showthat Hf < H*f < 2"Hf.
24. If f € L}, and f is continuous at z, then z is in the Lebesgue set of f.
25, If E'is a Borel set in R™, the density Dg(x) of E at x is defined as

m(E N B(r,z))

Dg(z) = lim m(B(r,z))

whenever the limit exists.
a. Show that Dg(z) = 1forae.z € E and Dg(x) =0 forae. z € E°.

b. Find examples of E and x such that Dg(z) is a given number « € (0, 1), or

such that Dg (x) does not exist.

26. If A\ and 4 are positive, mutually singular Borel measures on R™ and A\ + p is

regular, then so are A and p.

2. If vis asigned measure, E is v-null iff |/|(E) = 0. Also, if v and u are signed



