
Solution to Homework 7. Math 113 Summer 2016.

1. Compute the minimal polynomials and find the degree of the following simple extensions
of Q:

(a) Q(
√
−3)

(b) Q(
√

3 + i)

(c) Q(
√

2−
√

10)

(d) Q(e2πi/p), for p an odd prime.

Solution: Let f denote the minimal polynomial.

(a) f = x2 + 3, [Q(
√
−3) : Q] = 2.

(b) f = x4 − 4x2 + 16, [Q(
√

3 +
√
−1) : Q] = 4.

(c) f = x4 − 24x2 + 64, [Q(
√

2−
√

10) : Q] = 4.

(d) f = xp−1 + xp−2 + ... + x + 1, [Q(e2π
√
−1/p) : Q] = p − 1.

2. Find a primitive element for each of the following extensions, then use this to find their
minimal polynomial and degree:

(a) Q(i ,
√

3)

(b) Q( 4
√

2,
√

2)

(c) Q(
√

2,
√

10)

Solution: Let α be the primitive element, K the given field.

(a) α =
√
−1 +

√
3: indeed, we have Q(α) ⊂ K and, since 4α−1 =

√
3 −
√
−1, we

can show that 1
2(α + 4α−1) =

√
3 ∈ Q(α) and 1

2(α − 4α−1) =
√
−1 ∈ Q(α).

Hence, K ⊂ Q(α) and K = Q(α). Moreover, the subset {1,
√

3,
√
−1,
√
−3} is

linearly independent over Q: the set {1,
√

3} is linearly independent over Q since√
3 is irrational, hence the same is true of {

√
−1,
√
−3}. As these two subsets

are contained in different (real) lines in C, then set {1,
√

3,
√
−1,
√
−3} is linearly

independent. Hence, [K : Q] ≥ 4. Since α is a root of f = x4 − 4x2 + 16, we see
that [K : Q] = 4 and f is the minimal polynomial.

(b) Here you can actually just use 4
√

2 as the primitive element. It generates
√

2 since
( 4
√

2)2 =
√

2.

(c)
√

2 +
√

10 is a primitive element. Argument similar to (a).

3. Prove that, up to isomorphism, there are no finite extensions of C except C itself. In
other words, if L is a finite extension of C, then L ∼= C. Does there exist an algebraic
extension of C? Explain your answer.

Solution: Let L be a finite extension of C. Then, L is simple, so that there is some
α ∈ L such that L = C(α). Let f ∈ C[x ] be the minimal polynomial of α, so that
L ∼= C[x ]/(f ) and f is irreducible. By the Fundamental Theorem of Algebra, deg f = 1,
so that f = x−a. Then, f (α) = 0 =⇒ a = α =⇒ α ∈ C. Hence, L = C(α) = C (here
we identify C with its image in L). There does not exist a proper algebraic extension: if
there did, call it F , then every element of F would algebraic over C. This means that if
α ∈ F then there is a minimal polynomial f ∈ C[x ] such that f (α) = 0. But f , being
the minimal polynomial, would also be irreducible, and the only irreducible polynomials
over C are the linear ones, so f = x − α (up to units), hence, since f ∈ C[x ], α ∈ C.
Thus F = C.



4. Let K be the field obtained by adjoining all three cube roots of 2 to Q. Show that K
contains all cube roots of unity and compute its degree over Q. [Hint for the degree

computation: you may want to let L be the field obtained by adjoining ω = −1+i
√
3

2 to
Q, and factorize the extension as Q ⊂ L ⊂ K . Note that ω3 = 1.]

Solution: The three cube roots of 2 are 3
√

2, ω 3
√

2, and ω2 3
√

2. Since K contains these,
and is a field, it also contains ω = ω2 3

√
2/ω 3
√

2, and hence also ω2. Obviously 1 is in Q,
so K contains all three of the cube rots of unity. So in fact we can write K = Q( 3

√
2,ω).

To find its degree factorize the extensions as Q ⊂ Q(ω) ⊂ K . We have seen that the
degree of Q(ω) over Q is 2 (its minimal polynomial is x2 + x + 1). Since K = Qω)( 3

√
2)

,its minimal polynomial is just x3−2 (but note that this is not the minimal polynomial of
K over Q, because 3

√
2 is not a primitive element for K over Q). Hence [K : Q(ω)] = 3,

so since degree is multiplicative in towers, [K : Q] = 6.

5. Suppose f ∈ Q[x ], not necessarily irreducible.

(a) Show that there is a smallest subfield of C over which f factors into linear factors.
In other words, prove there exists a subfield Kf of C such that (i) f factors into
linear factors in Kf [x ], and (ii) if L is any other subfield of C for which f factors
into linear factors in L[x ], then L ⊇ Kf .

(b) Taking f = x7 − x4 − 4x3 + 4, find Kf by writing at as Q(α,β, ...), and compute
the degree of Kf over Q.

Solution:

(a) Let {a1, ... , ak} ⊂ C be the distinct roots of f . Then, Kf = Q(a1, ... , ak). Obviously
f ∈ Kf [x ] factors into linear factors; if L is a subfield such that f ∈ L[x ] factorises
into linear factors then we must have x − ai ∈ L[x ], for each i (since C[x ] is a UFD
and L ⊂ C). Hence, we must have ai ∈ L, for each i , so that L ⊃ Q(a1, ... , ak), by
definition.

(b) We have

x7 − x4 − 4x3 + 4 = x4(x3 − 1)− 4(x3 − 1) = (x4 − 4)(x3 − 1)

and the last polynomial factorises as

(x −
√

2)(x +
√

2)(x −
√
−2)(x +

√
−2)(x − 1)(x − ω)(x − ω2),

where ω = −1
2 +

√
−3
2 . Hence, Kf is obtained by adjoining

√
2,
√
−1,
√

3. Adjoining
each of these elements one at a time results in fields Q ⊂ E ⊂ F ⊂ Kf , with each
extension being of degree 2. Hence, [Kf : Q] = 8.

6. Define A = {α ∈ C | there exists f ∈ Q[x ] such that f (α) = 0} - this is the set of
algebraic numbers. For example,

√
2 ∈ A (since f (

√
2) = 0, where f = x2 − 2), and√

−2 +
√

3 ∈ A (since g(
√
−2 +

√
3) = 0, where g = x4 − 2x2 + 25).

(a) Show that Q ⊂ A.

(b) Let Q ⊂ L be an algebraic extension of Q. Prove that L ⊂ A.

(c) Prove that A is a field. Deduce that it is the largest algebraic extension of Q in C.
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(d) Explain, using a single sentence, why A 6= C.1

Solution:

(a) If a ∈ Q it’s algebraic because it’s a root of the rational polynomial x − a.

(b) For any a ∈ L, a is algebraic over Q since L is an algebraic extension. But then a
satisfies some polynomial f , so a ∈ A.

(c) We need to show that A contains 0, 1, and is closed under addition, multiplication
and taking additive and multiplicative inverses. 0 and 1 are in A because they are
roots of the rational polynomials x and x − 1, respectively. Now let a, b ∈ A, both
nonzero, and consider the extension Q ⊂ Q(a, b). It’s finite because it factors as
Q ⊂ Q(a) ⊂ Q(a, b), both of which are simple extensions by a and b, and since a
and b are algebraic, these are simple algebraic extensions. But being finite over Q,
Q(a, b) is also algebraic over Q, and so any element of Q(a, b) is algebraic over Q.
In particular, a + b, ab,−a, and a−1 are all algebraic over Q, and hence in A.

(d) π ∈ C but π is not algebraic over Q.

7. Let K = Q(i 4
√

2) and L = Q(i 4
√

2,
√

3), so that Q ⊂ K ⊂ L.

(a) Give an example of an embedding of K which is not an automorphism.

(b) Give an example of an automorphism of L which does not fix K pointwise.

Solution:

(a) Consider the homomorphism f defined by mapping i 4
√

2 7→ 4
√

2 - this defines an
embedding that is not an automorphism, since im f ⊂ R and Q(i 4

√
2) 6⊂ R.

(b) You can consider the automorphism g such that g(i 4
√

2) = −i 4
√

2, g(
√

3) =
√

3.
This does not fix K pointwise.

8. Consider the extension Q(
√

2) ⊂ Q( 4
√

2).

(a) Prove that every automorphism of Q( 4
√

2) fixes Q(
√

2) pointwise.

(b) Deduce that Gal(Q( 4
√

2) : Q(
√

2)) = Gal(Q( 4
√

2) : Q).

(c) Show that Q(
√

2) ⊂ Q( 4
√

2) is a normal extension, but Q ⊂ Q( 4
√

2) is not.

(d) Using (b), or otherwise, compute Gal(Q( 4
√

2) : Q).

Solution:

(a) The minimal polynomial of 4
√

2 is x4− 2, and its roots are ± 4
√

2 and ±i 4
√

2. So any
automorphism of Q( 4

√
2) must send 4

√
2 to one of these roots, but only the first two

live in Q( 4
√

2). So the only automorphisms of Q( 4
√

2) send 4
√

2 to ± 4
√

2, and both
of these send

√
2 = ( 4

√
2)2 to (± 4

√
2)2 =

√
2.

(b) This follows immediately from (a): there are the same two automorphisms in each
Galois group.

(c) The first extension is normal because its Galois group has size two (by the argument
in (a)), and its degree is also two. The second is not because its Galois group has
size two (by the argument in (a)) but it is a degree four extension.

1In fact, the algebraic integers are countable: this means that there is a bijection {1, 2, 3, ...} ↔ A. The
real numbers are uncountable so that there is no bijection {1, 2, 3, ... , } ↔ R; this means that there are *many*
more real numbers than algebraic integers.
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(d) The two automorphisms in Gal(Q( 4
√

2) : Q) are the identity map and the map
determined by mapping 4

√
2 to − 4

√
2.

9. Compute the Galois group of Q ⊂ Q(i +
√

2). List all intermediate subfields of the
extension.

Solution: We have seen in class that Q(i +
√

2) = Q(i ,
√

2), so any automorphism
of Q(i ,

√
2) is determined by what it does to i and

√
3 - there are four possibilities

g++, g−+, g+−, g−−, where g−+(i) = −i , g−+(
√

3) =
√

3 etc. Each of these au-
tomorphisms has order two so that Gal(Q(i +

√
2),Q) ∼= Z/2Z × Z/2Z, the Klein

four group. Since the extension is normal - [Q(i +
√

2) : Q] = 4 = |Gal(Q(i +√
2) : Q)| - the Galois connection is a bijection, so there are five intermediate sub-

fields Q,Q(i +
√

2),Q(i),Q(
√

2),Q(
√
−2), corresponding respectively to the subgroups

Gal(Q(i +
√

2),Q), {id}, 〈g++〉, 〈g+−〉, 〈g−+〉, 〈g−−〉.

10. Compute the Galois group of Q ⊂ Q( 3
√

2, i
√

3).

Solution: An automorphism is determined by its effect on 3
√

2 and i
√

3. The first must
map to one of { 3

√
2,ω 3
√

2,ω2 3
√

2} and i
√

3 must map to one of {±i
√

3}. Notice that

since ω = −1+i
√
3

2 , negating i
√

3 has the effect of sending ω to ω2 = ω. Moreover this
extension is normal, since the conjugates of both generators all live in the field. So there
will be six automorphisms, and we can write them all down by listing all “permutations
of the roots” of the minimal polynomials for each generator. We get

σ1 :

{
3
√

2 7→ 3
√

2

i
√

3 7→ i
√

3
σ2 :

{
3
√

2 7→ ω 3
√

2

i 7→ i
√

3
σ3 :

{
3
√

2 7→ ω2 3
√

2

i 7→ i
√

3

σ4 :

{
3
√

2 7→ 3
√

2

i 7→ −i
√

3
σ5 :

{
3
√

2 7→ ω 3
√

2

i 7→ −i
√

3
σ6 :

{
3
√

2 7→ ω2 3
√

2

i 7→ −i
√

3

Now this group, being of order six, must be isomorphic to either Z/6Z or S3, as we saw
in the group theory part of the course. We claim it’s isomorphic to S3, and can show this
by verifying that it’s not abelian - for instance, σ2 and σ4 do not commute. To see this,
let’s calculate the effect of both σ2σ4 and σ4σ2 on the element 3

√
2:

σ2σ4(
3
√

2) = σ2(
3
√

2) = ω
3
√

2,

whereas
σ4σ2(

3
√

2) = σ4(ω
3
√

2) = σ4(ω)σ4(
3
√

2) = ω2 3
√

2.

Thus σ2σ4 and σ4σ2 are not the same function, so this group of automorphisms is not
abelian.
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