
Math 872 - Algebraic Topology - Spring 2014
(Active) Table of Contents

Chapter 0: Overview and review

Section A: Overview of the course: Big questions in topology

Decision problems
Homotopy equivalence problem

Classification problem
Homotopy invariants

Idea: Use homotopy type invariants to prove two spaces do NOT have the same

homotopy type.

Groups - π1 and Hn groups

Inputting spaces into computers

π1 homotopy invariants

P1.18 Thm: If X and Y are path-connected and are homotopy equivalent, then π1(X) ≅

π1(Y). *

Thm: If X and Y are path-connected and are homotopy equivalent, then X has [abelian,

finite respectively] fundamental group iff Y has [abelian, finite respectively] fundamental

group.

Section B: Review from Math 871: Homotopy and fundamental groups

Chapter 4: Homotopy
Homotopy and homotopy relative to a subspace (for maps)

Homotopy equivalence (maps) and homotopy equivalent (spaces)

E0.3 Lemma: Homotopy equivalence and homotopy type are equivalence relations on maps

and spaces, respectively. *

Contractible space
Mapping cylinder construction: Uses product, disjoint union, and quotient topology

Thm: For the mapping cylinder Xf of the map f: X -> Y, Xf is homotopy equivalent to Y.

(More: Y is a deformation retract of Xf.)

Chapter 5: Fundamental groups

Basepoint, loop, product of loops, constant loop, reverse of a loop, path homotopy
Def: Fundamental group π1(X)

P1.3 Thm: π1 is a group. *

Change of basepoint homomorphism

P1.5 Thm: If X is path-connected (PC), then π1(X) is independent of basepoint, up to

isomorphism. **
Induced homomorphism from a continuous function

Chapter 6: π1(S1)

Section A: Proof



P1.30 Statements of the Path Lifting Theorem (PLT) and Path Homotopy Lifting Theorem (PHLT)

for lifting paths and homotopies from S1 to R1

T1.7 Thm: π1(S1) ≅ Z **

Proofs of the PLT and PHLT

Section B: Applications

P1.17 If r:X → A is a retraction and i:A → X is the inclusion, then r* is onto and i* is one-to-one.

**

Examples of subspaces that can't be retracts

T1.10 Borsuk-Ulam Thm: If f:S2 → R2 is continuous, then there are antipodal points p,-p in S2

with f(p)=f(-p).

E1.1.9 Ham Sandwich Thm: Given three rectangular boxes (or more generally measurable subsets)

in R3, there is a plane that bisects each (into regions of equal volume) simultaneously.

E1.1.5 π1(X,x0) = 1 iff every continuous map S1 → X extends to a continuous map D2 → X. *

Prop: No relationship between π1 and subgroup, quotient constructions *

P1.12 Thm: If X and Y are PC then π1(X × Y) is isomorphic to π1(X) × π1(Y). **

Chapter 7: Presenting groups

Section A: Review and Presentations

Review of normal subgroups, cosets, and quotients

Definitions and examples of free groups
Definitions and examples of presentations of groups

Homomorphism Building Theorems (HBT's) **
Tietze transformations and Tietze's Theorem *

Section B: Building new groups from old

Three views of direct products: Sets with multiplication, presentations, and the homomorphism

building theorem (HBT, aka universal property)
Three views of free products: Sets with multiplication, presentations and the Homomorphism
Building Theorem, and examples **

Amalgamated products, examples

Chapter 8: The Seifert - Van Kampen Theorem

Section A: Statement and first examples

T1.20 SVK Thm: If X is a union of open path-connected subspaces Aα (for indices α in an index

set J) all containing the basepoint x0, that satisfy the properties that every pairwise and triple

intersection Aα ∩ Aβ and Aα ∩ Aβ ∩ Aγ is also path-connected, then π1(X) is isomorphic to the

group *α ∈ J π1(Aα)/N, where N is the normal subgroup generated by all elements of the form iAβ

Aγ*([w]) iAγ Aβ*([w])-1 with [w] ∈ π1(Aβ ∩ Aγ). **



Computing fundamental groups of graphs

Abelianization of a group
Applications to the homotopy equivalence problem

Finitely presented group examples

Section B: Classification of surfaces

Definition of n-manifold, surface
Connected sum operation

Computing fundamental groups of surfaces

C1.27 Thm: If X is a compact connected surface, then X is homeomorphic to exactly one of S2, #n

T2, or #n P2 for some natural number n. **

Section C: Proof of SVK

Building the homomorphism with the HBT
Using the Lebesgue Number Lemma and the "seashell method" to prove onto
Using LNL again to prove 1-1

Chapter 9: Presenting spaces

Section A: Building new spaces from old

Wedge products

Thm: If for each α the basepoint xα of each space Xα is a deformation retract of an open

neighborhood Uα of xα in Xα, then π1(∨α Xα) ≅ ∗α π1(Xα) is a free product. **

Cones

Section B: CW complexes

Definitions: CW complex, cell, n-skeleton, attaching (characteristic) map, dimension
Examples, including putting CW structures on familiar spaces

Continuous Function Building Thm: If X is a CW complex, Y is a topological space, and f:X → Y
is a function, then f is continuous iff every composition f ο Φα of f with an attaching map is

continuous. *

PS(9.B.3) Thm: A CW complex with finitely many cells is compact.
PA.3 Thm: CW complexes are Hausdorff.

EA.3 Thm: A CW complex X is PC iff the 1-skeleton X(1) is PC. **

Section C: Fundamental groups of CW complexes

P1A.2 Thm 1: The fundamental group of the 1-skeleton of a CW complex is a free group,

generated by loops at a basepoint that follow a path in a maximal tree T, then traverse a single edge

outside T, and then another path in T back to the basepoint. **

P1.26 Thm 2: For a CW complex X the inclusion X(1) -> X(2) induces a surjection of fundamental

groups whose kernel is generated by loops corresponding to the attaching maps of the 2-cells of X.
**



PS(9.C.1) Thm n: π1(X) is isomorphic to π1(X(2)). **

Presentation complexes

P1.28 2-Way Street Thm: For every group G there is a 2-dimensional CW complex X with π1(X)

isomorphic to G. *

Section D: Connectednesses

PC and LPC, and examples
Simply-connected and SLSC, and examples

PA.4 Thm: CW complexes are LPC and SLSC.

Chapter 10: Covering spaces

Section A: Definitions and lifting

Definition and examples of covering spaces
P1.30 Path and path homotopy lifting theorem (PPHLT) **

P1.31 Thm: If p:Y → X is a covering space then ker p* = 1 and im p* = {[f]| f lifts to a loop}. **

Application/Cor: For all natural numbers n, the free group Fn is a subgroup of the free group F2.

P1.32 Lifting Correspondence Function and Thm: Let X and Y be path-connected spaces and let
p: (Y,y0) -> (X,x0) be a covering space. The Lifting Correspondence Function Φ: π1(X,x0) / p*

(π1(Y,y0)) -> p-1({x0}) defined by Φ(p*(π1(Y,y0))[l]) := m(1), where m is the unique lift of the path

l in Y starting at y0, is a well-defined bijection. **

P1.33,P1.34 Lifting Criterion and Unique Lifting Property, and examples **

Cor: If p: Y -> X is a covering space and X is a CW complex, then Y is a CW complex. *

Section B: Group actions

Group action, covering space action, orbit, and orbit space

P1.40 Thm: If G has a covering space action on Y, then: (1) The quotient p:Y -> Y/G is a covering
space. (2) If Y is PC and LPC then p*(π1(Y,y0)) is normal in π1(Y/G,[y0]). (3) If Y is PC and

LPC then G is isomorphic to π1(Y/G,[y0]) / p*(π1(Y,y0)). **

Cor: If Y is simply-connected and LPC and G has a covering space action on Y, then G is

isomorphic to π1(Y/G). **

Definitions of presentation complex, and Cayley complex, and examples.

Hp.77 Thm: Let Y be the Cayley complex of a presentation of G. Then G has a covering space
action on Y, Y/G is the presentation complex, Y is simply connected, and π1(Y/G) ≅ G. *

Section C: The universal covering and the Galois correspondence

Existence theorems
P1.36 Simply-connected Covering Thm: Let X be a PC, LPC, SLSC space. Then there is a

simply-connected covering space p: Y -> X, and there is a covering space group action of

π1(X) on Y inducing the map p. **

P1.36 Existence Thm: Let X be a PC, LPC, SLSC space, and let H be a subgroup of



π1(X). Then there is a covering space p: Y -> X with H=p*(π1(Y)). Moreover, if H is a

normal subgroup of π1(X) then there is a covering space group action of G/H on Y inducing

the map p. *
Uniqueness theorem

Definition of isomorphism of pointed covering spaces

Definition of deck transformations
P1.37 Uniqueness Thm: Any two PC, LPC pointed covering spaces pi: (Xi,xi) -> (X,x0)

(i=1,2) of a pointed space (X,x0) satisfy p1*(X1,x1) = p2*(X2,x2) iff the pointed covering

spaces are isomorphic.

MegaTheorem: Let (X,x0) be a PC, LPC, SLSC space, let G = π1(X,x0), and let p: (Y,y0) ->

(X,x0) be the simply-connected covering. Let q: (Z,z0) -> (X,x0) be any PC covering space. Then: 

(a) P1.38 Galois Correspondence Thm: The maps {subgroups H of G} <-> {isomorphism classes

of PC pointed coverings of (X,x0)} defined by H -> (p': (Y/H,[y0]) -> (X,x0)) and (p'': (Y'',y''0) ->

(X,x0)) -> im p''* are inverse bijections. ** 

(b) Hp.68 Universal Covering Thm: There is a covering space map r: Y -> Z with the composition

qr=p. ** 
(c) P1.39 Deck Transformation Thm: Deckgp(q) = N_G(H)/H, where H := r*(π1(X,x0)).

Moreover, H is normal in G iff Deckgp(q) (=G/H) has a covering space action on Y inducing q. *
The correspondence table and examples

T1A.4 Application/Thm: Every subgroup of a free group is free.

The "look up" and "look down" methods of constructing the covering space corresponding to a

given subgroup, and more examples

Chapter 11: Simplicial homology

Section A: Overview of homology

Higher homotopy groups and their weaknesses

Strengths and weaknesses of simplicial, CW, and singular homologies

Section B: Δ-complexes

Standard simplices and faces

Δ-complex definition and examples

Section C: Simplicial homology

Definition of Simplicial n-chains and boundary maps ∂n

L2.1 Lem: ∂n-1 ο ∂n

Definition of simplicial homology groups Hn
simpl

Examples
Linear algebra over Z

Connections between ker ∂1 and loops, im ∂2 and disks filling in loops

Chapter 12: Singular homology



Section A: Definitions and induced homomorphisms

Singular chains and definition of Hn
sing

P2.6 Thm: If X has path components Xα, then Hn
sing(X) = ⊕α Hn

sing(Xα). *

P2.7 Thm: If X is path-connected, then H0
sing(X) = Z. **

Reduced singular homology
Homological algebra excursion:

Chain complex, cycle, boundary, homology

Chain map, induced homology homomorphism
Chain homotopy

P2.12 Thm: Chain homotopic chain maps induce the same homology homomorphism.

T2.27 Thm: If X is a Δ-complex, then Hn
simpl(X) and Hn

sing(X) are isomorphic for all n. *

Inducing singular homology homomorphisms via continuous functions
T2.10 Thm: Homology homomorphisms induced by continuous functions are abelian group

homomorphisms that compose nicely; homotopic maps induce the same homology homomorphism.

C2.11 Thm: If X and Y are homotopy equivalent, then Hn
sing(X) and Hn

sing(Y) are isomorphic

for all n. **

Cor: If a topological space has two Δ-complex structures, i.e. if X and X' are homeomorphic Δ-

complexes, then Hn
simpl(X) is isomorphic to Hn

simpl(X') for all n.

Examples/applications

Section B: Mayer-Vietoris Theorem

Statement and first examples

Homological algebra: Exact sequence

Lem: Let a: A → B be an abelian group homomorphism. (1) 0 → A → B is exact iff a is

one-to-one. (2) A → B → 0 is exact iff a is onto. *

H p.149 MV Thm: Suppose that X is a topological space with subspaces A,B such that X =

Int(A) ∪ Int(B). Then there is an exact sequence ... → Hn(A ∩ B) → Hn(A) ⊕ Hn(B) →

Hn(X) → Hn-1(A ∩ B) → ... → H0(X) → 0, such that each homorphism φn: Hn(A ∩ B) →

Hn(A) ⊕ Hn(B) is given by φn = (iAB n,*,-iBA n,*) and each homomorphism ψn: Hn(A) ⊕

Hn(B) → Hn(X) is given by ψn = jA n,* + jB n,*, where iAB: A ∩ B → A, iBA: A ∩ B → B,

jA: A → X, and jB: B → X are inclusion maps. **

Connection to the SVK theorem
Examples of computing with the Mayer-Vietoris Theorem

Proof of MV and the definition of the δ homomorphism

Small Chains Thm: If A,B are subspaces of X with X=Int(A) ∪ Int(B) then Hn(X) is

isomorphic to Hn(A+B).

Picture for using the Lebesgue Number Lemma to prove the Small Chains Thm.

T2.16 Snake Lemma: A short exact sequence of chain complexes induces a long exact

sequence on homology. *

Section C: Simplifying Hn with subspaces



Definition and long exact sequence for relative homology
T2.13 Crushing Good Subspaces Thm: If A is a nonempty closed subspace of X that is a

deformation retract of an open neighborhood of A in X, then Hn(X,A) ≅ Hn(X/A) for n > 0. **

T2.20 Excision Thm: (a) If Z ⊆ A ⊆ X and Cl(Z) ⊆ Int(A), then Hn(X,A) ≅ Hn(X - Z, A - Z).

(b) If A,B ⊆ X and X = Int(A) ∪ Int(B), then Hn(X,A) ≅ Hn(B, A ∩ B). **

Examples

S. Hermiller.


