Math 872 - Algebraic Topology - Spring 2014 (Active) Table of Contents

Chapter 0: Overview and review

- Section A: Overview of the course: Big questions in topology
 - Decision problems
 - Homotopy equivalence problem
 - Classification problem
 - Homotopy invariants
 - Idea: Use homotopy type invariants to prove two spaces do NOT have the same homotopy type.
 - Groups π_1 and H_n groups
 - Inputting spaces into computers
 - π_1 homotopy invariants
 - **P1.18** Thm: If X and Y are path-connected and are homotopy equivalent, then $\pi_1(X) \cong \pi_1(Y)$. *
 - Thm: If X and Y are **path-connected** and are homotopy equivalent, then X has [abelian, finite respectively] fundamental group iff Y has [abelian, finite respectively] fundamental group.
- Section B: Review from Math 871: Homotopy and fundamental groups
 - Chapter 4: Homotopy
 - Homotopy and homotopy relative to a subspace (for maps)
 - Homotopy equivalence (maps) and homotopy equivalent (spaces)
 - E0.3 Lemma: Homotopy equivalence and homotopy type are equivalence relations on maps and spaces, respectively. *
 - Contractible space
 - Mapping cylinder construction: Uses product, disjoint union, and quotient topology
 - Thm: For the mapping cylinder X_f of the map f. X -> Y, X_f is homotopy equivalent to Y.
 (More: Y is a deformation retract of X_f.)
 - Chapter 5: Fundamental groups
 - Basepoint, loop, product of loops, constant loop, reverse of a loop, path homotopy
 - Def: Fundamental group $\pi_1(X)$
 - P1.3 Thm: π₁ is a group. *
 - Change of basepoint homomorphism
 - P1.5 Thm: If X is path-connected (PC), then π₁(X) is independent of basepoint, up to isomorphism. **
 - Induced homomorphism from a continuous function

Chapter 6: $\pi_1(S^1)$

• Section A: Proof

- **P1.30** Statements of the Path Lifting Theorem (PLT) and Path Homotopy Lifting Theorem (PHLT) for lifting paths and homotopies from S^1 to \mathbf{R}^1
- **T1.7** Thm: $\pi_1(S^1) \cong \mathbb{Z}^{**}$
- Proofs of the PLT and PHLT
- Section B: Applications
 - **P1.17** If $r:X \to A$ is a retraction and $i:A \to X$ is the inclusion, then r_* is onto and i_* is one-to-one.
 - Examples of subspaces that can't be retracts
 - **T1.10** Borsuk-Ulam Thm: If $f:S^2 \to \mathbb{R}^2$ is continuous, then there are antipodal points p,-p in S^2 with f(p)=f(-p).
 - **E1.1.9** Ham Sandwich Thm: Given three rectangular boxes (or more generally measurable subsets) in **R**³, there is a plane that bisects each (into regions of equal volume) simultaneously.
 - E1.1.5 $\pi_1(X, x_0) = 1$ iff every continuous map $S^1 \to X$ extends to a continuous map $D^2 \to X$. *
 - Prop: No relationship between π_1 and **subgroup**, quotient constructions *
 - **P1.12** Thm: If X and Y are PC then $\pi_1(X \times Y)$ is isomorphic to $\pi_1(X) \times \pi_1(Y)$. **

Chapter 7: Presenting groups

- Section A: Review and Presentations
 - Review of normal subgroups, cosets, and quotients
 - Definitions and examples of free groups
 - Definitions and examples of presentations of groups
 - Homomorphism Building Theorems (HBT's) **
 - Tietze transformations and Tietze's Theorem *
- Section B: Building new groups from old
 - Three views of direct products: Sets with multiplication, presentations, and the homomorphism building theorem (HBT, aka universal property)
 - Three views of **free products**: Sets with multiplication, presentations and the Homomorphism Building Theorem, and examples ******
 - Amalgamated products, examples

Chapter 8: The Seifert - Van Kampen Theorem

- Section A: Statement and first examples
 - **T1.20** SVK Thm: If X is a union of open path-connected subspaces A_{α} (for indices α in an index set J) all containing the basepoint x_0 , that satisfy the properties that every pairwise and triple intersection $A_{\alpha} \cap A_{\beta}$ and $A_{\alpha} \cap A_{\beta} \cap A_{\gamma}$ is also path-connected, then $\pi_1(X)$ is isomorphic to the group $*_{\alpha \in J} \pi_1(A_{\alpha})/N$, where N is the normal subgroup generated by all elements of the form $i_{A_{\beta}} = A_{\gamma}*([w]) i_{A_{\gamma}A_{\beta}}*([w])^{-1}$ with $[w] \in \pi_1(A_{\beta} \cap A_{\gamma})$. **

- Computing fundamental groups of graphs
- Abelianization of a group
- Applications to the homotopy equivalence problem
- Finitely presented group examples
- Section B: Classification of surfaces
 - Definition of n-manifold, surface
 - Connected sum operation
 - Computing fundamental groups of surfaces
 - **C1.27** Thm: If X is a compact connected surface, then X is homeomorphic to exactly one of S^2 , $\#^n T^2$, or $\#^n P^2$ for some natural number n. ******
- Section C: Proof of SVK
 - Building the homomorphism with the HBT
 - Using the Lebesgue Number Lemma and the "seashell method" to prove onto
 - Using LNL again to prove 1-1

Chapter 9: Presenting spaces

- Section A: Building new spaces from old
 - Wedge products
 - Thm: If for each α the basepoint x_{α} of each space X_{α} is a deformation retract of an open neighborhood U_{α} of x_{α} in X_{α} , then $\pi_1(\vee_{\alpha} X_{\alpha}) \cong *_{\alpha} \pi_1(X_{\alpha})$ is a free product. **
 - Cones
- Section B: CW complexes
 - Definitions: CW complex, cell, *n*-skeleton, attaching (characteristic) map, dimension
 - Examples, including putting CW structures on familiar spaces
 - Continuous Function Building Thm: If X is a CW complex, Y is a topological space, and f:X \rightarrow Y is a function, then f is continuous iff every composition f o Φ_{α} of f with an attaching map is continuous. *
 - PS(9.B.3) Thm: A CW complex with finitely many cells is compact.
 - PA.3 Thm: CW complexes are Hausdorff.
 - EA.3 Thm: A CW complex X is PC iff the 1-skeleton $X^{(1)}$ is PC. **
- Section C: Fundamental groups of CW complexes
 - **P1A.2** Thm 1: The fundamental group of the 1-skeleton of a CW complex is a free group, generated by loops at a basepoint that follow a path in a maximal tree T, then traverse a single edge outside T, and then another path in T back to the basepoint. **
 - **P1.26** Thm 2: For a CW complex X the inclusion X⁽¹⁾ -> X⁽²⁾ induces a surjection of fundamental groups whose kernel is generated by loops corresponding to the attaching maps of the 2-cells of X. **

- **PS(9.C.1)** Thm n: $\pi_1(X)$ is isomorphic to $\pi_1(X^{(2)})$. **
- Presentation complexes
- **P1.28** 2-Way Street Thm: For every group G there is a 2-dimensional CW complex X with $\pi_1(X)$ isomorphic to G. *
- Section D: Connectednesses
 - PC and LPC, and examples
 - **Simply-connected** and SLSC, and examples
 - **PA.4** Thm: CW complexes are LPC and SLSC.

Chapter 10: Covering spaces

- Section A: Definitions and lifting
 - Definition and examples of **covering spaces**
 - P1.30 Path and path homotopy lifting theorem (PPHLT) **
 - **P1.31** Thm: If $p:Y \to X$ is a covering space then ker $p_* = 1$ and im $p_* = \{[f] | f \text{ lifts to a loop}\}$. **
 - Application/Cor: For all natural numbers n, the free group F_n is a subgroup of the free group F_2 .
 - P1.32 Lifting Correspondence Function and Thm: Let X and Y be path-connected spaces and let p: (Y,y₀) -> (X,x₀) be a covering space. The Lifting Correspondence Function Φ: π₁(X,x₀) / p* (π₁(Y,y₀)) -> p⁻¹({x₀}) defined by Φ(p*(π₁(Y,y₀))[l]) := m(1), where m is the unique lift of the path l in Y starting at y₀, is a well-defined bijection. **
 - P1.33,P1.34 Lifting Criterion and Unique Lifting Property, and examples **
 - Cor: If p: Y -> X is a covering space and X is a CW complex, then Y is a CW complex. *
- Section B: Group actions
 - Group action, covering space action, orbit, and orbit space
 - P1.40 Thm: If G has a covering space action on Y, then: (1) The quotient p:Y -> Y/G is a covering space. (2) If Y is PC and LPC then p*(π₁(Y,y₀)) is normal in π₁(Y/G,[y₀]). (3) If Y is PC and LPC then G is isomorphic to π₁(Y/G,[y₀]) / p*(π₁(Y,y₀)). **
 - Cor: If Y is simply-connected and LPC and G has a covering space action on Y, then G is isomorphic to $\pi_1(Y/G)$. **
 - Definitions of presentation complex, and Cayley complex, and examples.
 - **Hp.77** Thm: Let Y be the Cayley complex of a presentation of G. Then G has a covering space action on Y, Y/G is the presentation complex, Y is simply connected, and $\pi_1(Y/G) \cong G$. *
- Section C: The universal covering and the Galois correspondence
 - Existence theorems
 - P1.36 Simply-connected Covering Thm: Let X be a PC, LPC, SLSC space. Then there is a simply-connected covering space p: Y -> X, and there is a covering space group action of π₁(X) on Y inducing the map p. **
 - P1.36 Existence Thm: Let X be a PC, LPC, SLSC space, and let H be a subgroup of

 $\pi_1(X)$. Then there is a covering space p: Y -> X with H=p*($\pi_1(Y)$). Moreover, if H is a normal subgroup of $\pi_1(X)$ then there is a covering space group action of G/H on Y inducing the map p. *

- Uniqueness theorem
 - Definition of isomorphism of pointed covering spaces
 - Definition of deck transformations
 - P1.37 Uniqueness Thm: Any two PC, LPC pointed covering spaces p_i: (X_i,x_i) -> (X,x₀) (i=1,2) of a pointed space (X,x₀) satisfy p_{1*}(X₁,x₁) = p_{2*}(X₂,x₂) iff the pointed covering spaces are isomorphic.
- MegaTheorem: Let (X,x_0) be a PC, LPC, SLSC space, let $G = \pi_1(X,x_0)$, and let p: $(Y,y_0) \rightarrow \infty$

(X,x₀) be the simply-connected covering. Let q: $(Z,z_0) \rightarrow (X,x_0)$ be any PC covering space. Then: (a) **P1.38** Galois Correspondence Thm: The maps {subgroups H of G} <-> {isomorphism classes of PC pointed coverings of (X,x_0) } defined by H -> (p': $(Y/H,[y_0]) \rightarrow (X,x_0)$) and (p": $(Y'',y''_0) \rightarrow (Y,y''_0) \rightarrow (Y,$

 (X,x_0)) -> im p"* are inverse bijections. **

(b) **Hp.68** Universal Covering Thm: There is a covering space map r: $Y \rightarrow Z$ with the composition qr=p. **

(c) **P1.39** Deck Transformation Thm: Deckgp(q) = N_G(H)/H, where $H := r_*(\pi_1(X, x_0))$.

Moreover, H is normal in G iff Deckgp(q) (=G/H) has a covering space action on Y inducing q. *

- The correspondence table and examples
- T1A.4 Application/Thm: Every subgroup of a free group is free.
- The "look up" and "look down" methods of constructing the covering space corresponding to a given subgroup, and more examples

Chapter 11: Simplicial homology

- Section A: Overview of homology
 - Higher homotopy groups and their weaknesses
 - Strengths and weaknesses of simplicial, CW, and singular homologies
- Section B: *∆*-complexes
 - Standard simplices and faces
 - **Δ-complex** definition and examples
- Section C: Simplicial homology
 - $\circ~$ Definition of Simplicial n-chains and boundary maps ∂_n
 - **L2.1** Lem: $\partial_{n-1} \circ \partial_n$
 - Definition of simplicial homology groups H_n^{simpl}
 - Examples
 - Linear algebra over Z
 - $\circ~$ Connections between ker ∂_1 and loops, im ∂_2 and disks filling in loops

Chapter 12: Singular homology

- Section A: Definitions and induced homomorphisms
 - Singular chains and definition of H_n^{sing}
 - **P2.6** Thm: If X has path components X_{α} , then $H_n^{sing}(X) = \bigoplus_{\alpha} H_n^{sing}(X_{\alpha})$. *
 - **P2.7** Thm: If X is path-connected, then $H_0^{sing}(X) = Z **$
 - Reduced singular homology
 - Homological algebra excursion:
 - Chain complex, cycle, boundary, homology
 - Chain map, induced homology homomorphism
 - Chain homotopy
 - P2.12 Thm: Chain homotopic chain maps induce the same homology homomorphism.
 - **T2.27** Thm: If X is a Δ -complex, then $H_n^{simpl}(X)$ and $H_n^{sing}(X)$ are isomorphic for all n. *
 - Inducing singular homology homomorphisms via continuous functions
 - **T2.10** Thm: Homology homomorphisms induced by continuous functions are abelian group homomorphisms that compose nicely; homotopic maps induce the same homology homomorphism.
 - **C2.11** Thm: If X and Y are homotopy equivalent, then $H_n^{sing}(X)$ and $H_n^{sing}(Y)$ are isomorphic for all n. **
 - Cor: If a topological space has two Δ -complex structures, i.e. if X and X' are homeomorphic Δ complexes, then $H_n^{simpl}(X)$ is isomorphic to $H_n^{simpl}(X')$ for all n.
 - Examples/applications
- Section B: Mayer-Vietoris Theorem
 - Statement and first examples
 - Homological algebra: Exact sequence
 - Lem: Let a: A → B be an abelian group homomorphism. (1) 0 → A → B is exact iff a is one-to-one. (2) A → B → 0 is exact iff a is onto. *
 - **H p.149** MV Thm: Suppose that X is a topological space with subspaces A,B such that X = Int(A) \cup Int(B). Then there is an exact sequence ... \rightarrow H_n(A \cap B) \rightarrow H_n(A) \oplus H_n(B) \rightarrow H_n(X) \rightarrow H_{n-1}(A \cap B) \rightarrow ... \rightarrow H₀(X) \rightarrow 0, such that each homorphism φ_n : H_n(A \cap B) \rightarrow H_n(A) \oplus H_n(B) is given by $\varphi_n = (i_{AB n}, *, -i_{BA n}, *)$ and each homomorphism ψ_n : H_n(A) \oplus H_n(B) \rightarrow H_n(X) is given by $\psi_n = j_{A n}, * + j_{B n}, *$, where i_{AB} : A \cap B \rightarrow A, i_{BA} : A \cap B \rightarrow B, j_A : A \rightarrow X, and j_B : B \rightarrow X are inclusion maps. **
 - Connection to the SVK theorem
 - Examples of computing with the Mayer-Vietoris Theorem
 - $\circ~Proof \, of \, MV$ and the definition of the δ homomorphism
 - Small Chains Thm: If A,B are subspaces of X with X=Int(A) ∪ Int(B) then H_n(X) is isomorphic to H_n(A+B).
 - Picture for using the Lebesgue Number Lemma to prove the Small Chains Thm.
 - T2.16 Snake Lemma: A short exact sequence of chain complexes induces a long exact sequence on homology. *
- Section C: Simplifying H_n with subspaces

- Definition and long exact sequence for relative homology
- **T2.13** Crushing Good Subspaces Thm: If A is a nonempty closed subspace of X that is a deformation retract of an open neighborhood of A in X, then $H_n(X,A) \cong H_n(X/A)$ for n > 0. **
- **T2.20** Excision Thm: (a) If $Z \subseteq A \subseteq X$ and $Cl(Z) \subseteq Int(A)$, then $H_n(X,A) \cong H_n(X Z, A Z)$. (b) If $A,B \subseteq X$ and $X = Int(A) \cup Int(B)$, then $H_n(X,A) \cong H_n(B, A \cap B)$. **
- Examples

S. Hermiller.