
Math 872 - Section 001 - Spring 2014 - Problem sets

Problem set 1:

(6.A.1) Hatcher p. 38 # 5 
(Hint: You may wish to use the following lemma in your proofs: 

Lemma *: If g : X → Y is a continuous surjection, X is compact, and Y is Hausdorff, then g is a
quotient map.)

(6.A.2) For each integer n, let ωn be the path in S1 defined by ωn(s) := ( cos(2 π n s) , sin(2 π n s)

) for all s ∈ I. Define a homotopy H : I × I -> S1 by 
H(s,t) := ( cos(2 π m (s/C)) , sin(2 π m (s/C)) ) for s ∈ [0,C] and 

H(s,t) := ( cos(2 π n ((s - C)/(1 - C))) , sin(2 π n ((s - C)/(1 - C))) ) for s ∈ [C,1] 
where C := (1-t)(1/2)+tm/(m+n). (a) Prove that H is a path homotopy from ωm * ωn to ωm+n. (b)

For some values of m and n, the statement in part (a) is false(!); determine what these values are,

and find a homotopy between ωm * ωn to ωm+n for those m and n.

(6.A.3) Using the map p : R × R -> S1 × S1 be defined by p(x,y) := ( ( cos(2 π x) , sin(2 π x) ) , (

cos(2 π y) , sin(2 π y) ) ): 

(a) Let f be the loop in S1 × S1 based at ((1,0),(1,0)) defined by f(s) := ( ( cos(2 π s) , sin(2 π s) ) ,
( cos(4 π s) , sin(4 π s) ) ). Find a path g: (I,0) -> (R × R,(0,0)) satisfying p ο g = f. Sketch the

image of g in R × R and the image of f in S1 × S1 (viewing S1 × S1 as the surface of a doughnut). 

(b) Generalize the proof that π1(S1)=Z (and the proofs of the path and homotopy lifting theorems)

to prove that π1(S1 × S1) = Z × Z.

(6.A.4) Consider the map h: S1 → S1 given by h(z)=1/(zn) (where z ∈ S1 is considered as a
complex number). What group homomorphism : Z → Z is induced by h? (Prove your answer.)

(6.A.5) Show that every homomorphism φ : Z -> π1(X,x0) can be realized as the induced

homomorphism φ = h* of a continuous map h : (S1, (1,0)) -> (X,x0). 

(Hint: Lemma * above can be useful for the proof here, too.)

(6.B.1) Hatcher p. 39 # 16abf 

(Hints for f: The boundary of X is the set of points that have an open neighborhood homeomorphic

to the half disc {(x,y) ∈ R2 | x2 + y2 < 1 and x ≥ 0}. Let x0 be a basepoint of X on the boundary

circle. Let f be the loop in X at x0 that goes around the center circle of X once, and let g be the

loop at x0 that goes around the boundary cricle of X once. How are f and g related? Where does

the map induced by a retraction r:X → A send [f] and [g]?)

(6.B.2) Hatcher p. 39 # 10 (Remember Hatcher means path homotopy here. Prove your answer.)

(6.B.3) Hatcher p. 38 # 8
Problems due 1/30/14 for grading: 6.A.1 (just the equivalence of b and c), 6.A.5, 6.B.2, 6.B.3

Problem for presentation in class:

(PP.1) Let A1, A2, and A3 be solid rectangular blocks in R3. For each q in S2 and t in R, let Pq,t

be the plane in R3 containing the point tq and perpendicular to the vector pointing from (0,0,0) to

q. Let Hq,t be the connected component of R3 - Pq,t containing the point (t+1)q and let Jq,t be the

other connected component. 



(a) Draw pictures of Pq,t and Hq,t. Using pictures and multivariate calculus (Math 208), discuss

how to compute the volume vol(Ai ∩ Hq,t). 

(b) Discuss why the function S2 × R → R given by (q,t) → vol(A3 ∩ Hq,t) is continuous. Prove

that for each q in S2 there is a real number tq such that vol(A3 ∩ Hq,tq
) = vol(A3 ∩ Jq,tq

). Discuss

why tq is unique. 

(c) For i = 1,2 define the functions fi : S
2 → R by fi(q) := vol(Ai ∩ Hq,tq

). Discuss why these

functions are continuous. 

(d) Use the Borsuk-Ulam Theorem to prove that there is a plane in R3 that simultaneously divides
each block Ai into two pieces of equal volume. 

(Note: In parts that say "discuss" you don't need to give a full proof; a discussion with pictures will

do.)

Problem set 2:

(7.A.1) In each part of this problem, a group G is given by a presentation, together with a familiar

group H. Prove that the groups G and H are isomorphic. 

(a) G = < a | a3 > ; H is the cyclic group of order 3. 

(b) G = < a,b,c | a2, b2, c2, (ab)3, (ac)2, (bc)3 > ; H is the symmetric group permuting 4 objects.
(7.B.1) Let B := < a,b | aba = bab > (this is the braid group on 3 strands). Let H := < x | >, K :=

< y | >, and L := < z | > with group homomorphisms c : L -> H defined by c(z) := x2 and d : L ->

K defined by d(z) := y3. Let G be the free product of H and K amalgamated along L via the maps c
and d; that is, G = H *L K. Prove that the groups B and G are isomorphic.

(7.B.2) Hatcher p. 52 # 1. (Hint: Use the reduced sequence view.)
(8.A.1) Use the methods of section 8.A to compute the fundamental group of the Mobius band.

(8.A.2) Hatcher p. 53 # 4

(8.A.3) (a) Explain how the 2-sphere S2 is (homeomorphic to) a quotient of the square I x I with a
choice of identifications among the edges on the boundary of the square (i.e. identifying sets of

edges with arrows). (Show your map by pictures only.) 

(b) Let X be the quotient of S2 obtained by identifying the north and south poles to a single point.

Using part (a) and the Seifert-van Kampen Theorem, compute π1(X). (This part does need proof

details.)

(8.B.1) Let X be an octagon in R2. Define an equivalence relation on X corresponding to labeling

the 8 edges in the boundary of X in a counterclockwise fashion in order by: counterclockwise a,
counterclockwise b, clockwise a, clockwise b, counterclockwise c, counterclockwise d, clockwise

c, clockwise d. Let M be the corresponding quotient space. 
(a) Recall the concrete version of M you built in Math 871 out of paper or cloth (or any other 2-

dimensional flexible material): M is homeomorphic to the frosting on a doughnut with g holes; what
is g? 

(b) Compute π1(M) and prove your answer. 

(c) What familiar group is isomorphic to the abelianization π1(M)ab? (Prove your answer.) 

(d) Show that M is not homotopy equivalent to the torus T2, 2-sphere S2, projective plane P2, or

Klein bottle K2.
Problems due 2/13/14 for grading: 7.B.1, 7.B.2 (just the proof that G*H has trivial center), 8.A.3



Problem set 3:

(8.B.2) Use the proof of the Classification of Surfaces theorem to determine which of the spaces
listed in that classification is homeomorphic to the Klein bottle.

(8.C.1) Find an example of a topological space X that is a union of three open path-connected
subspaces Ai (for i=1,2,3) such that each pairwise intersection Ai ∩ Aj is path-connected, but

π1(X) is not isomorphic to the group *i=1
3 π1(Ai)/N, where N is the normal subgroup generated by

all elements of the form iAi Aj*
([w]) iAj Ai*

([w])-1 with [w] ∈ π1(Ai ∩ Aj).

(9.A.1) Let X be R3 - ( { (x,0,0) | x ∈ R } ∪ { (1,1,1), (2,3,4) }) with the Euclidean subspace

topology. Then X deformation retracts to a subspace that is homeomorphic to a wedge product of

m copies of S1 and n copies of S2. What are m and n? Use your answer to compute π1(X).

(Formal proof not needed for this problem.)

(9.B.1) For a CW complex X, show that if the 1-skeleton X(1) is path-connected, then so is X.
(9.B.2) Hatcher p. 19 # 17

(9.B.3) Show that every CW complex with finitely many cells is compact.
(9.B.4) Let X be a CW complex with finitely many cells, and for each natural number n, let j_n be
the number of n-cells of X (that is, j_n = |J_n|, where J_n is the index set for the n-cells). The Euler

characteristic for X is defined to be χ(X) := Σn ∈ N (-1)nj_n. 

(a) Compute the Euler characteristic of all of the compact connected surfaces. 

(b) Find a CW structure for the cone CX of X, and determine the Euler characteristic of CX.

(9.C.1) Show that if the map f : Sn-1 -> X is used to attach an n-cell, with n > 2, to X to form a
space Y, then the inclusion X -> Y induces an isomorphism from π1(X) to π1(Y). Show that the

same is true if we attach any (finite or infinite) collection of cells of dimension > 2.
(9.C.2) Hatcher p. 53 # 8

(9.C.3) Let X be the topological space obtained by taking a quotient of a Euclidean triangle,
identifying the three vertices. Find a CW complex structure for X and use this structure to compute

the fundamental group for X.
Problems due 2/27/14 for grading: 8.C.1, 9.A.1, 9.B.1, 9.C.2

Problem for presentation in class:

(PP.2) Let X be the space obtained from the solid cube I x I x I by gluing opposite square faces to
one another with a 90-degree righthand twist (e.g., glue I x I x {0} to I x I x {1} by identifying
(x,y,0) with (y,1-x,1)). Describe a CW structure for X and compute a presentation for π1(X).

Problem set 4:
(10.A.1) Hatcher p. 79 # 1

(10.A.2) Hatcher p. 79 # 3

(10.A.3) (a) Show (by pictures) a 2-sheeted covering space of the Klein bottle by the torus. (That

is, p:T2 -> K2.) 

(b) Show (by pictures) a simply connected covering space of the Klein bottle. 

(c) Using your answer in either (a) or (b) and the path lifting theorem, show that the fundamental
group of the Klein bottle is not abelian.

(10.A.4) Lifting Criterion/Unique Lifting Property Proof Deconstruction: The following questions

refer to the proofs in Hatcher on p. 62-3; LC para. 1 line 1 starts with ``The 'only if' statement is '',



LC para. 2 line 3 starts with ``path-connected open neighborhood'', ULP line 4 starts with

``continuity of \tilde f1'', etc.

(a) LC para 1 line 3: What theorem is used in the definition of the function \tilde f: Y -> \tilde

X?

(b) LC para 1 lines 6-7: What theorem is Hatcher applying in order to know that a loop h1

exists such that h1 is path homotopic to h0 and the lift \tilde h1 at \tilde x0 is a loop?

(c) LC para 1: Where is the hypothesis that im f* ⊆ im p* used in the proof that \tilde f is

well-defined?

(d) LC para 2: In order to prove that \tilde f is continuous, Hatcher is proving another

condition that is equivalent to the definition of continuous. State this condition, and give a
reference to the theorem in Munkres that shows the equivalence. Also, Hatcher doesn't

show the condition for all open neighborhoods of f(y), he only shows it for evenly covered

ones; write the missing sentences that show the condition holds for all open neighborhoods of
f(y).

(e) LC paras 1-2: Exactly where are the hypotheses that Y is PC and LPC, respectively,

used in this proof?

(f) ULP lines 4-5: Hatcher is again applying the theorem from Munkres you found in part (d)
here. Write a couple of extra lines explaining more clearly why an open set N exists with the

properties listed in these lines.

(g) ULP: Exactly where is the hypothesis that Y is connected used in this proof?

(10.B.1) Let Y be a path-connected, locally path-connected space with a covering space action by
a group G, let y0 ∈ Y, and let p: Y -> Y/G be the corresponding quotient map. Prove that p*

(π1(Y,y0)) is a normal subgroup of π1(Y/G,[y0]).

Exam 1 3/11/14

Problem for presentation in class:

(PP.3) Let G be the group presented by G = < a,b | a2=1, b3=1 >. Let H be the subgroup of G

generated by a. Let h : G → Z/2Z = < c | c2 = 1 > be the homomorphism built using the HBT that
satisfies h(a) = c and h(b) = 1, and let K be the kernel of h. 

(a) Explain how to view G as a free product of two finite groups, and use this to write out all of the

elements of G as reduced sequences. Describe/draw the presentation complex X and Cayley
complex Y for this presentation of G. 

(b) Prove that H is isomorphic to a familiar group. Draw/describe the quotient Y/H of Y by the

action of H. 

(c) Determine which reduced sequences in the free product group G do (or do not) lie in the
subgroup K. Use this information to draw/describe the quotient Y/K of Y by the action of K. Find

a presentation for the fundamental group π1(Y/K) of the CW complex Y/K.

Problem set 5:

(10.B.2) Let G be the group presented by < a,b | b2 = 1 >. 

(a) Draw the presentation complex for this presentation, and write this complex as a wedge sum of

two familiar spaces. 
(b) Draw the Cayley graph and the Cayley complex for this presentation. 

(c) Draw a simply connected covering space of the wedge sum of a circle S1 and a 2-sphere S2.



How does this differ from the Cayley complex in part (b)?

(10.B.3) Let Y be a simply connected and LPC space. Let G and H be subgroups of the group

Homeo(Y) of all homeomorphisms of Y. Suppose that G and H are conjugate in Homeo(Y), and
that both G and H give covering space actions on Y. Show that Y/G and Y/H are homeomorphic

spaces.

(10.C.1) Hatcher p. 80 # 12

(10.C.2) For the symmetric group permuting 3 objects, S3 = < a,b | a2 = b2 = (ab)3 = 1 >: Find the

presentation complex, the Cayley complex, and all connected covering spaces of the presentation

complex. Describe all of the cells and attaching maps of these CW complexes, in addition to

drawing pictures.
(10.C.3) Hatcher p. 82 # 31

(10.C.4) Let G be a finitely generated group and n a natural number. 

(a) Show that if H is an index n subgroup of G then H is finitely generated. Moreover, show that if

G is finitely presented then so is H. 
(b) Show that there are only a finite number of subgroups of G of index n. 

(Hint: In both parts, consider coverings of the presentation complex for G. In part (b), consider the

case that G is a free group first.)
Problems due 4/3/14 for grading: 10.B.3, 10.C.1

Problem set 6:

(11.B.1) Hatcher p. 131 # 2
(11.B.2) Construct a Δ-complex structure for the connected sum of two tori. (Give an explanation

with pictures, formal proof not needed. Be sure to label all simplices of all dimensions.)

(11.C.1) Hatcher p. 131 # 4 (Complete proof with all maps written out, etc., is needed here.)

(11.C.2) Compute the simplicial homology groups of the Klein bottle, torus, projective plane, and
Mobius band.

(11.C.3) Let X be the standard 3-simplex Δ3 with the "standard" Δ-complex structure (that is, with

four 0-simplices, six 1-simplices, four 2-simplices, and one 3-simplex). Compute the simplicial

homology groups of X, and compare them to the simplicial homology groups computed in class for

the 2-sphere S2.

(11.C.4) Hatcher p. 131 # 9

Problems due 4/17/14 for grading: 11.B.2, 11.C.1

Problems for presentation in class:

(PP.4) Let X be the topological space built in problem PP.2. Describe a Δ-complex structure for

X, and compute the homology groups Hsimpl
n(X) for all n. (Hint: Use four prisms.)

(PP.5) Let Y be any finite path-connected graph. Show how to compute the simplicial homology

groups of Y, and write these groups in terms of the Euler characteristic of Y (see problem (9.B.4)

for the definition).

Problem set 7:

(12.A.1) Hatcher p. 132 # 11

(12.A.2) Hatcher p. 133 # 29
(12.B.1) Use the Mayer-Vietoris Theorem to compute the homology groups of the following

spaces: 



(a) The space obtained from two tori glued along a circle from problem (9.C.2)/Hatcher p. 53 # 8. 

(b) The square I × I with all four boundary edges glued in a clockwise orientation. 

(c) The mapping cylinder of the function f:I → I defined by f(t) = 3t for t in [0,1/3], f(t) = -3t+2 for
t in [1/3,2/3], and f(t) = 3t-2 for t in [2/3,1].

(12.B.2) Hatcher p. 158 # 31

(12.B.3) Let X be a path-connected compact Hausdorff space. The cone on X is the quotient CX
of the space X x I by the equivalence relation making (p,0) equivalent to (q,0) for all p,q in X, and

the suspension of X is the quotient SX of the space X x I by the equivalence relation making (p,0)

equivalent to (q,0) and (p,1) equivalent to (q,1) for all p,q in X. 

(a) If X is a Δ-complex, find Δ-complex structures for CX and SX. 
(b) Show that the reduced homology groups of CX satisfy \tilde Hi(CX) = 0 for all i. 

(c) Show that the reduced homology groups of SX satisfy \tilde Hi(SX) = \tilde Hi-1(X) for all i.

Problems due 4/24/14 for grading: 12.A.2, 12.B.1(b) 
Exam 2 due 5/4/14

S. Hermiller.


