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I. The fundamental group

1. Introduction

We explain that algebraic topology aims to distinguish homotopy types. We in-
troduce the fundamental groupoid and the fundamental group.

1.1. Homotopy equivalence.

1.1.1. A topological space is a set X equipped with a distinguished collection of
subsets, called ‘open’. The collection must be closed under finite intersections and
arbitrary unions. In particular, it includes the empty union ∅, and the empty
intersection X.

A map X → Y between topological spaces is continuous if the preimage of
every open set in Y is open in X. A homeomorphism is a continuous map with a
continuous two-sided inverse.

Convention: In this course, ‘map’ will mean ‘continuous map’.

1.1.2. Elementary properties of spaces that are preserved by homeomorphism (e.g.
the Hausdorff property, compactness, connectedness, path-connectedness) allow us
to distinguish some spaces. For instance, the interval [0, 1] is not homeomorphic
to the circle S1 = R/Z because [0, 1] \ {1/2} is disconnected, whilst S1 \ {x} is
connected for any x ∈ S1. The spaces Xn =

∨n
i=1 S

1 (the wedge product, or one-
point union, of n copies of S1) are all distinct, because it is possible to delete n,
but not n+ 1, distinct points of Xn without disconnecting it.

However, if we thickened the circles in Xn to ribbons, making a space Yn, the
argument would fail. In algebraic topology, one looks for invariants of spaces which
are insensitive to such thickenings, so that if they distinguish the Xn they also
distinguish the Yn.

Definition 1.1. If f0, f1 : X → Y are maps, a homotopy from X → Y is a map
F : [0, 1]×X → Y such that F ◦it = ft for t ∈ {0, 1}, where it(x) = (t, x) ∈ [0, 1]×X.
We often think of F as a path {ft}t∈[0,1] of maps ft : X → Y .

Homotopy defines an equivalence relation on the set of maps f : X → Y , which
we denote by the symbol '.

Definition 1.2. A homotopy equivalence is a map f : X → Y such that there exists
g : Y → X which is an inverse up to homotopy. That is, f ◦g ' idY and g◦f ' idX .

Exercise 1.1: Homotopy equivalence defines an equivalence relation on spaces.

The equivalence classes are called homotopy types. Algebraic topology provides
a collection of invariants of homotopy types. The principal invariants are the fun-
damental group and the homology groups, and the homomorphisms between these
groups associated with maps between spaces.
Exercise 1.2: The following equivalent conditions define what is means for a non-empty
space X to be contractible. Check their equivalence.

• X is homotopy equivalent to a one-point space.
• For every x ∈ X, the inclusion {x} → X is a homotopy equivalence.
• For some x ∈ X, the inclusion {x} → X is a homotopy equivalence.
• For some x ∈ X, the constant map cx : X → X at x is homotopic to idX .

Exercise 1.3: Any convex subset of Rn is contractible.
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Convex subsets of Rn are contractible for a particular reason: their points are
deformation retracts. In general, if X is a space and i : A → X the inclusion of a
subspace, we say that A is a deformation retract of X if there is a map r : X → A
such that r ◦ i = idA and i ◦ r ' idX by a homotopy {ht} so that (in addition to
h0 = i ◦ r and h1 = idX) one has ht(a) = a for all t and a ∈ A. Such a map r,
called a deformation retraction, is obviously a homotopy equivalence.
Exercise 1.4: Show carefully that the letter A, considered as a union of closed line
segments in R2, is homotopy equivalent but not homeomorphic to the letter O. Show
briefly that all but one of the capital letters of the alphabet is either contractible or
deformation-retracts to a subspace homeomorphic to O. Show that the letters fall into
exactly three homotopy types. How many homeomorphism types are there? (View a
letter as a finite union of the images of paths [0, 1]→ R2. Choose a typeface!)

Exercise 1.5: Let {Xα}α∈A be a collection of spaces indexed by a set A. Let xα ∈ Xα

be basepoints. Define the wedge sum (or 1-point union)
∨
α∈AXα as the quotient space

of the disjoint union
∐
αXα by the equivalence relation xα ∼ xβ for all α, β ∈ A.

Show carefully that, for n ≥ 1, the complement of p distinct points in Rn is homotopy-
equivalent to the wedge sum of p copies of the sphere Sn−1 = {x ∈ Rn : |x| = 1}.

Remark. Let’s look ahead. Theorems of Hurewicz and J. H. C. Whitehead imply
that, among all spaces which are cell complexes, the sphere Sn = {x ∈ Rn+1 :
|x| = 1}, with n > 1, is characterized up to homotopy equivalence by its homology
groups H0(Sn) ∼= Hn(Sn) ∼= Z, Hi(Sn) = 0 for i /∈ {0, 1} and its trivial fundamental
group. In general, distinct homotopy types can have trivial fundamental groups and
isomorphic homology groups (e.g. S2 × S2, CP 2#CP 2). Another invariant, the
cohomology ring, distinguishes these two examples. When it fails to distinguish
spaces, one localizes the problem and works over Q and mod primes p. Over Q, a
certain commutative differential graded algebra gives a new invariant [D. Sullivan,
Infinitesimal computations in topology, Publ. Math. I.H.E.S. (1977)]. Mod p, one
considers the Steenrod operations on cohomology. There is an algebraic structure
which captures all this at once, and gives a complete invariant for the homotopy
type of cell complexes with trivial fundamental group [M. Mandell, Cochains and
homotopy type, Publ. Math. I.H.E.S. (2006)].

1.2. The fundamental groupoid.

1.2.1. Our first invariants of homotopy type are the fundamental groupoid and the
isomorphism class of the fundamental group.

A path in a space X is a map f : I → X, where I = [0, 1]. Two paths f0 and f1

are homotopic rel endpoints if there is a homotopy {ft}t∈[0,1] between them such
that ft(0) and ft(1) are both independent of t. Write ∼ for the equivalence relation
of homotopy rel endpoints.

Two paths f and g are composable if f(1) = g(0). In this case, their composite
f ·g is the result of traversing first f , then g, both at double speed: (f ·g)(t) = f(2t)
for t ∈ [0, 1/2] and (f · g)(t) = g(2t− 1) for t ∈ [1/2, 1].

The composition operation is not associative: (f · g) · h 6= f · (g · h). What is
true, however, is that (f · g) · h ∼ f · (g · h). (Proof by picture.)

If f is a path, let f−1 denote the reversed path: f−1(t) = f(1 − t). One has
f · f−1 ∼ cf(0) and f−1 · f ∼ cf(1), where cx denotes the constant path at x.
(Picture.) Moreover, cf(0) · f ' f and f · cf(1) ' f .
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We now define a category Π1(X), the fundamental groupoid of X. A category
consists of a collection (for instance, a set) of objects, and for any pair of objects
(x, y), a set Mor(x, y) of ‘morphisms’ (or ‘maps’) from x to y. Also given is an
associative composition rule

Mor(x, y)×Mor(y, z)→ Mor(x, z).

Each set Mor(x, x) must contain an identity ex (meaning that composition with ex
on the left or right does nothing).

The objects of the category Π1(X) are the points of X. Define Π1(x, y) as the
set of equivalence classes of paths from x to y under the relation of homotopy rel
endpoints. Π1(x, y) will be the morphism set Mor(x, y) in the category. One has
well-defined composition maps Π1(x, y)×Π1(y, z)→ Π1(x, z), which are associative
by our discussion. The class [cx] of the constant path at x defines an identity element
ex for Π1(x, x). This shows that Π1(X) is a category.

A category in which every morphism has a 2-sided inverse is called a groupoid.
Every morphism [f ] ∈ Π1(x, y) has a 2-sided inverse [f−1] ∈ Π1(y, x).

1.2.2. Groupoids are too complicated to be really useful as invariants. However,
as with any groupoid, the sets Π1(x, x) form groups under composition, and we
can use this to extract a practical invariant. When a basepoint x ∈ X is fixed,
π1(X,x) := Π1(x, x) is called the fundamental group. It is the group of based
homotopy classes of loops based at x.

• If X is path connected, the fundamental groups for different basepoints are
all isomorphic. Indeed, if f is a path from x to y then the map

π1(X,x)→ π1(Y, y), [γ] 7→ [f ] · [γ] · [f−1]

is an isomorphism.
• If F : X → Y is a map, there is an induced homomorphism

F∗ : π1(X,x)→ π1(Y, F (x)), [f ] 7→ [F ◦ f ].

If G : Y → Z is another map, one clearly has G∗F∗ = (G ◦ F )∗.
• Maps F0 and F1 which are based homotopic (i.e. homotopic through maps
Ft with Ft(x) constant for all t) give the same homomorphism π1(X,x)→
π1(Y, F0(x)).

Exercise 1.6: (a) If f0 and f1 are loops (I, ∂I) → (X,x), we say they are homo-
topic through loops if they are joined by a homotopy ft with ft(0) equal to
ft(1) but not necessarily to x. Show that f0 is homotopic to f1 through loops
iff [f0] is conjugate to [f1] in π1(X,x).

(b) Show that a homotopy equivalence between path connected space induces an
isomorphism on π1, regardless of the choices of basepoints.

A point ∗ clearly has trivial π1 (there’s only one map I → ∗). By (b) from the
exercise, π1(X,x) = {1} for any contractible space X and any x ∈ X.

A space is called simply connected if it is path-connected and has trivial π1. We
have just seen that contractible spaces are simply connected.
Exercise 1.7: (*) Prove directly that the 2-sphere S2 = {x ∈ R3 : |x| = 1} is simply
connected.
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2. The fundamental group of the circle

Our first calculation of a non-trivial fundamental group has already has remark-
able consequences.

2.1. Trivial loops. We begin by interpreting what it means for a loop to be trivial
in the fundamental group. It is convenient to regard a loop not as a map f : I → X
with f(1) = f(0) but as a map from the unit circle S1 = ∂D2 ⊂ C into X.

Proposition 2.1. A loop f : S1 → X represents the identity element e ∈ π1(X, f(1))
if and only if it extends to a map from the closed unit disc D2 into X.

Thus a simply connected space is a path-connected space in which every loop
bounds a disc.

Proof. If [f ] = 1 ∈ π1(X, f(1)), let {ft}t∈[0,1] be a homotopy rel endpoints from
the constant map cf(1) to f = f1. Define a continuous extension F : D2 → X of f
by setting F (z) = f|z|(z/|z|) if z 6= 0 and F (0) = f(1).

Conversely, if f extends to F : D2 → X, define a map I×S1 → X, (t, z) 7→ F (tz).
Then F is a homotopy from the constant map cF (0) to f . The latter is in turn is
homotopic through constant maps to cf(1). Hence f is homotopic through loops to
cf(1). By (a) from Exercise 1.6, [f ] is conjugate to [cf(1)]. But [cf(1)] = e, hence
[f ] = e. �

2.2. Computing π1(S1).

Theorem 2.2. The fundamental group of S1 is infinite cyclic: there is a (unique)
homomorphism deg : π1(S1) ∼= Z such that deg(idS1) = 1.

We think of S1 as R/Z, and take [0] as basepoint. Note that two maps S1 → S1

taking [0] to [0] are homotopic through loops iff they represent conjugate elements
in π1(S1, [0]). By the theorem, π1 is abelian, so conjugate elements are actually
equal. Hence deg is actually an invariant of homotopy through loops, indeed a
complete invariant.

The key idea of the proof is to look at the quotient map p : R→ R/Z = S1. This
map is the prototypical example of a covering map.

Lemma 2.3. Every map f : (I, ∂I) → (S1, [0]) lifts uniquely to a map f̃ : I → R
such that (i) f̃(0) = 0, and (ii) p ◦ f̃ = f .

Proof. Let T be the set of t ∈ I such that f̃ exists and is unique on [0, t]. For any
[x] = p(x) ∈ S1, the open set U[x] = p(x − 1/4, x + 1/4) ⊂ S1 contains [x] and
has the following property: the preimage p−1(U) is the disjoint union of open sets
V nx := (n+x−1/4, n+x−1/4), n ∈ Z. Moreover, pmaps each V nx homeomorphically
onto U .

If f̃ has been defined on [0, t], with t < 1, there exists δ > 0 so that f(t−δ, t+δ) ⊂
Uf(t). Since f̃(t) ∈ V 0

f̃(t)
, we are forced to define f̃ on [t, t+ δ) as the composite

[t+ δ)
f−−−−→ Uf(t)

p−1

−−−−→ V 0
f(t).

This does indeed define an extension of f̃ to [0, t+ δ). So T is an open set.
Now suppose f̃ exists and is unique on [0, t). Since f(s) → f(t) as s → t,

when 0 < t − s � 1 the lifts f̃(s) must lie in one of the open sets V projecting
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homeomorphically to Uf(t), independent of s. Thus we can define f̃(t) to be the
preimage of f(t) that lies in V , and this defines the unique continuous lift of f on
[0, t]. Hence T is closed. Since I is connected and T non-empty, we have T = I.

�

Proof of the theorem. Given f : (I, ∂I) → (S1, [0]), construct f̃ as in the lemma.
Since p ◦ f̃(1) = [0], f̃(1) is an integer. Define the degree deg(f) to be this integer.
Since f̃ was uniquely determined by f , deg(f) is well-defined. We now observe that
if {ft}t∈[0,1] is a based homotopy then deg(f0) = deg(f1). Indeed, we can lift each
ft to a unique map f̃t : I → R, p(f̃t(0)) = [0], and p ◦ f̃t = ft. It is easy to check
that the f̃t vary continuously in t, hence define a homotopy {f̃t} from f̃0 to f̃1.
Thus deg(ft) = f̃t(1) is a continuous Z-valued function, hence constant.

Thus deg defines a map π1(S1) → Z. It is a homomorphism because f̃ · g is
given on [0, 1/2] by the unique lift of t 7→ f(2t) which begins at 0 (this ends at
deg(f)), and on [1/2, 1] by the unique lift of t 7→ f(2t− 1) which begins at deg(f)
(this ends at deg(g) + deg(f)).

The degree homomorphism is surjective because deg(idS1) = 1. To see that it
is injective, suppose deg f = 0. Then f̃ is a loop in R, based at 0. Since R is
simply connected, f̃ is based-homotopic to the constant map, and applying p to
this homotopy we see that the same is true of f . �

2.3. Applications.

Corollary 2.4 (The fundamental theorem of algebra). Every non-constant poly-
nomial p(z) ∈ C[z] has a complex root.

Proof. We may assume p is monic. If p(z) = zn + cn−1z
n−1 + · · ·+ c0 has no root,

p(z)/|p(z)| is a well-defined function C → S1 ⊂ C. Let f denote its restriction to
the circle {|z| = 1}. Now, f extends to a map from the unit disc to S1, whence f
is null-homotopic (cf. the last lecture) so deg(f) = 0 by the homotopy-invariance
of degree.

Now define ft : S1 → S1 for t > 1 by ft(z) = p(tz)/|p(tz)|. The ft are all
homotopic, and f1 = f , so deg(ft) = 0 for all t. But for |z| � 0, |cn−1z

n−1 + · · ·+
c0| < |zn|, and hence ps(z) := zn + s(cn−1z

n + · · ·+ c0) has no root for 0 ≤ s ≤ 1.
Thus, for some fixed t � 0, we can define gs : S1 → S1 by gs(z) = ps(tz)/|ps(tz)|,
and this defines a homotopy from ft = g1 to g0. But g0(z) = zn/|zn|, and so
deg g0 = n (check this!). Hence n = 0. �

Remark. Some proofs of FTA invoke Cauchy’s theorem from complex analysis. To
make the link with our approach, note that if γ : S1 → C∗ is a loop then, by the
residue theorem (a consequence of Cauchy’s theorem) the complex number

d(γ) =
1

2πi

∫
γ

z−1dz

is actually an integer depending on γ only through its homotopy class in C∗. When
γ is a based loop S1 → S1 ⊂ C∗, d(γ) = deg(γ) (this follows from our theorem,
bearing in mind that d defines a homomorphism d : π1(S1)→ Z and that d(idS1) =
1).

Another corollary is the Brouwer fixed point theorem.

Corollary 2.5. Every continuous map g : D2 → D2 has a fixed point.
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(Here D2 denotes the closed unit disc.)

Proof. Suppose g has no fixed point. Then, for any x ∈ D2, there is a unique
line passing through x and g(x). Define r(x) ∈ S1 to be the point where this line
hits S1 = ∂D2 when one starts at g(x) and moves along the line towards x. Thus
r(x) = x when x ∈ ∂D2. Writing r(x) = x + t(g(x) − x), one calculates from the
requirements that |r(x)| = 1 and t ≤ 0 that

t =
〈x, x− g(x)〉 −

√
〈x, x− g(x)〉2 − (|x|2 − 1)|x− g(x)|2
|x− g(x)|2

.

Thus r is continuous.
On the other hand, there can be no continuous r : D2 → ∂D2 with r|∂D2 = id,

for if such an r existed, the degree of its restriction r′ to the boundary would be 1
(because r′ = id) but also 0 (because r′ extends over D2). Hence there must be a
fixed point. �

Remark. The Brouwer fixed point theorem holds in higher dimensions too: every
continuous map g : Dn → Dn has a fixed point. One can attempt to prove it using
the same argument. For this to work, what one needs is a homotopy-invariant,
integer-valued degree for maps Sn−1 → Sn−1. The identity map should have degree
1 and the constant map degree 0. With such a function in place, the same argument
will run.

There are many ways of defining a degree function (actually, the same degree
function): one can use homology theory, homotopy theory, differential topology or
complex analysis.

Exercise 2.1: Show that every matrix A ∈ SL2(R) can be written uniquely as a product
KL with K ∈ SO(2) and L lower-triangular with positive diagonal entries. Use this
to write down (i) a deformation-retraction of SL2(R) (topologized as a subspace of
R4) onto its subspace SO(2); and (ii) a homeomorphism S1× (0,∞)×R→ SL2(R).
Deduce that SL2(R) is path-connected and that π1(SL2(R)) ∼= Z.

Exercise 2.2: The polar decomposition. It is known that every matrix A ∈ SL2(C)
can be written uniquely as a product UP with U ∈ SU(2) and P positive-definite
hermitian. Assuming this, deduce a homeomorphism S3× (0,∞)×C→ SL2(C). (We
will soon see that this implies π1SL2(C) = {1}.)
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3. Van Kampen in theory

There are two basic methods for computing fundamental groups. One, the method
of covering spaces, generalises our proof that π1(S1) = Z. The other, which we shall
discuss today, is to cut the space into simpler pieces and use a ‘locality’ property of
π1 called van Kampen’s theorem (a.k.a. the Seifert–van Kampen theorem).

3.1. Group presentations.

Definition 3.1. A free group on a set S is a group FS equipped with a map
i : S → FS enjoying a ‘universal property’: for any map f from S to a group G
there is a unique homomorphism f̃ : FS → G with f̃ ◦ i = f .

If FS and F ′S are both free groups on S, and i : S → FS and i′ : S → F ′S
the defining maps, then there are unique homomorphisms h : FS → F ′S such that
h ◦ i = i′ and h′ : F ′S → FS such that h ◦ i′ = i. Thus h′ ◦ h ◦ i = i. It follows that
h′ ◦ h = id, since both sides are homomorphisms FS → FS extending i. Hence h
and h′ are inverse isomorphisms.

The free group Fn := F{1,...,n} can be realised as the group of all ‘words’ made
up of ‘letters’ a1, . . . , an and their formal inverses a−1

1 , . . . , a−1
n , e.g. a4a

−1
3 a2

4a
−7
1 .

Expressions aia−1
i and a−1

i ai can be deleted or inserted. The group operation is
concatenation of words, e.g. (a4a

−1
3 ) · (a3a

3
2) = a4a

−1
3 a3a

3
2 = a4a

3
2. The identity

element is the empty word. The map i sends m to am, and given an f : {1, . . . , n} →
G we extend it to f̃ by sending, for example, a2a

−1
1 a2

3 to f(a2)f(a1)−1f(a3)2.
We often write this group as 〈a1, . . . , an〉. For example, F1 = 〈a〉 ∼= Z.

Lemma 3.2. The groups Fn, for different n, are all distinct.

Proof. The abelianization (Fn)ab := Fn/[Fn,Fn] is isomorphic to Zn, and Zn/2Zn
has 2n elements. �

Now suppose that r1, . . . , rm are elements of 〈a1, . . . , an〉. Let R be the smallest
normal subgroup containing the ri (R is thought of as a group of ‘relations’). Define

〈a1, . . . , an | r1, . . . , rm〉 = 〈a1, . . . , ar〉/R.

If G is a group, and g1, . . . , gn ∈ G group elements, there’s a unique homomorphism
f : 〈a1, . . . , an〉 → G sending each ai to gi. It is surjective iff g1, . . . , gn generate G.
In this case, G ∼= 〈a1, . . . , an〉/ ker f . Thus, if g1, . . . gn generate G, and r1, . . . , rm
are elements of 〈a1, . . . , an〉 which generate ker f as a normal subgroup, then f
induces an isomorphism

〈a1, . . . , an | r1, . . . , rm〉 → G.

Such an isomorphism is called a (finite) presentation for G. As examples, we have(!)

Z/(n) ∼= 〈a | an〉, D2n
∼= 〈a, b | an, b2, (ba)2〉, Z2 ∼= 〈a, b | aba−1b−1〉.

3.2. Push-outs.

Definition 3.3. Consider three groups, G1, G2 and H, and a pair of homomor-
phisms

G1
f1←− H f2−→ G2.
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A push-out for (f1, f2) is another group P and a pair of homomorphisms p1 : G1 →
P and g2 : G2 → P forming a commutative square

H
f1−−−−→ G1

f2

y yp1
G2

p2−−−−→ P

and satisfying a universal property: given any other such square (a group K and
homomorphisms k1 : G1 → K and k2 : G2 → K such that k1 ◦ f1 = k2 ◦ f2), there
is a unique homomorphism h : P → K such that k1 = h ◦ p1 and k2 = h ◦ p2.

Exercise 3.1: Prove that the universal property determines P up to isomorphism. In
what sense is the isomorphism unique?

We can understand push-outs concretely using group presentations. Suppose
G1 = 〈a1, . . . , an | r1, . . . rm〉 and that G2 = 〈b1, . . . , bp | s1, . . . , sq〉. Also suppose
that H has generators h1, . . . , ho. In the push-out square above, the group P is then
a group called the free product of G1 and G2 amalgamated along H and notated
G1 ∗H G2. It has the presentation

G1 ∗H G2 = 〈a1, . . . , an, b1, . . . , bp | r1, . . . rm, s1, . . . , sq, c1, . . . , co〉,
where ci = f1(hi)f2(hi)−1.
Exercise 3.2: Check that K = G1 ∗H G2 fits into a push-out square for f1 and f2.

Note that there was no need for our group presentations to be finite, except for
notational convenience: we can allow infinite sets of generators and relations.
Exercise 3.3: The free product G1 ∗ G2 of groups G1 and G2 is the push-out of the
diagram G1 ← {1} → G2. Define D∞ as the subgroup of the group of affine transfor-
mations R→ R generated by x 7→ −x and x 7→ x+1. Prove that D∞ ∼= (Z/2)∗(Z/2).

Exercise 3.4: In this exercise we show that the modular group, PSL2(Z) = SL2(Z)/{±I},
is the free product (Z/2) ∗ (Z/3). Define three elements of SL2(Z),

S =
[

0 1
−1 0

]
, T =

[
1 −1
0 1

]
, U = ST =

[
0 1
−1 1

]
.

(a) Verify that S2 = U3 = −I.
(b) Show that, for any A ∈ SL2(Z), there is an n ∈ Z such that the matrix[

a b
c d

]
= ATn has c = 0 or |d| ≤ |c|/2.

(c) Explain how to find an integer l ≥ 0 and a sequence of integers n1, . . . , nl
such that either ATn1STn2S . . . ST l or ATn1STn2S . . . ST lS has 0 as its
lower-left entry.

(d) Show that S and T generate SL2(Z).
(e)* Define θ : 〈a, b | a2, b3〉 = (Z/2) ∗ (Z/3) → PSL2(Z) to be the unique

homomorphism such that θ(a) = ±S and θ(b) = ±U . Remind yourself
how PSL2(R) acts on the upper half-plane H ⊂ C by Möbius maps. Take
1 6= w ∈ (Z/2) ∗ (Z/3). Prove that the Möbius map µw corresponding to
θ(w) ∈ PSL2(R) has the property that µw(D) ∩D = ∅, where

D = {z ∈ H : 0 < Re z < 1/2, |z − 1| > 1}.
[Hint: consider A := {z ∈ H : Re z > 0} and B := {z ∈ H : |z − 1| >
max(1, |z|)}.] Deduce that θ is an isomorphism.
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3.3. Van Kampen’s theorem.

Theorem 3.4. Suppose that X is the union of two path-connected open subsets
U and V with path-connected intersection U ∩ V . Take x ∈ U ∩ V . Then the
commutative diagram

π1(U ∩ V, x) −−−−→ π1(U, x)y y
π1(V, x) −−−−→ π1(X,x)

of maps induced by the inclusions is a push-out square.

Example 3.5. Let Cn be the complement of n points in the plane. Observe that
Cn deformation-retracts to the wedge sum

∨n
i=1 S

1. We have π1(Cn) ∼= Fn. Indeed,
when n > 0,

∨n
i=1 S

1 is the union of a subspace U which deformation-retracts to∨n−1
i=1 S

1, and a subspace V which deformation-retracts to S1, where the subspace
U ∩ V is contractible. By induction, π1(U) ∼= Fn−1. We know π1(V ) ∼= Z = F1.
The push-out of Fn−1 and Z along the trivial group H is Fn−1 ∗F1

∼= Fn. Thus the
result follows from van Kampen’s theorem.

Lemma 3.6. For any loop γ : (I, ∂I) → (X,x), there exists a finite, strictly in-
creasing sequence 0 = s0 < s1 < s2 < · · · < sn = 1 such that γ maps each interval
[si, si+1] into U or into V .

Proof. Every x ∈ I has a connected open neighbourhood whose closure maps to U
or to V . Since I is compact, finitely many of these intervals cover I. The endpoints
of the intervals in the finite cover form a finite subset of I, which we may enumerate
in ascending order as (s0, . . . , sn). �

Let us call the sequence (si) a subdivison for γ.

Lemma 3.7. Suppose Γ = {γt}t∈[0,1] is a homotopy of paths (I, ∂I) → (X,x).
Then there are increasing sequences 0 = t0 < t1 < · · · < tm = 1, and 0 = s0 <
· · · < sn = 1, such that Γ maps each rectangle [ti, ti+1] × [sj , sj+1] into U or into
V . Moreover, we can take the sequence (si) to refine given subdivisions of γ0 and
γ1.

Exercise 3.5: Prove the lemma.

Proof of Van Kampen’s theorem. Suppose we are given a group G and homomor-
phisms f : π1(U)→ G, g : π1(V )→ G which agree on the images of π1(U ∩V ). We
construct a map α : π1(X) → G so that f = α ◦ (iU )∗ and g = α ◦ (iV )∗, where
iU : U → X and iV : V → X are the inclusions.

Take γ : (I, ∂I) → (X,x), and choose a subdivision s0 < · · · < sn. Label the
intervals [si, si+1] as red or blue, in such a way that γ maps red intervals to U
and blue intervals to V . For 0 < i < n, connect γ(si) to x by a path δi inside
U (if both adjacent intervals [si−1, si] and [si, si+1] are red), inside V (if both
adjacent intervals are blue), or inside U ∩ V (if the adjacent intervals are different
colours). Then βi := δ−1

i ∗ γ|[si,si+1] ∗ δi is a loop in either U or V . Define α[γ] =
α1[β0] · · · · · αn−1[βn−1], where αi is either f or g according to whether [si, si+1] is
red or blue.

We need to see that α is well-defined, and does not depend on the choices of
path, subdivision and colouring. Observe that for a fixed γ and fixed subdivision,
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changing the colouring does not affect α, because f and g agree on the image of
π1(U∩V ). Moreover, refining a subdivision for given γ does not affect the definition
of α. Nor does changing the choice of a path δi (instead of trying to replace δi by a
rival path δ′i, insert an extra point into the subdivision, and use both paths δi and
δ′i).

Hence we are left with considering homotopic paths γ0 and γ1 with a common
subdivision s0 < · · · < sn.

Given a homotopy Γ = {γt}, we can subdivide [0, 1] × [0, 1] into rectangles
Rij = [ti, ti+1]× [sj , sj+1] and color the Rij as red or blue in such a way so that Γ
maps the red rectangles to U and the blue ones to V . It will suffice to show that
γ0 and γt1 give the same definition for α.

This last part of the argument requires pictures, which I will draw in class.
(Consult Hatcher if you need to.) The idea is this: rather than going along the
bottom edge ofR0j we can go around the other three sides. We have γ0 ' β0∗· · ·∗βn,
but by going round these three sides we can replace βi by a new loop β′i, and this
will not affect α. By eliminating backtracking we can get from β0 ∗ · · · ∗ βn to γt1 ,
again without affecting α.

Knowing it is well-defined, one can check that α is a homomorphism making the
two triangles commute (do so!). Note also that it is the unique such homomorphism:
since γ is homotopic to the composite of the δi ∗ γ|[si,si+1] ∗ δ−1

i , we have no choice
but to define α this way. This concludes the proof. �
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4. Van Kampen in practice

We compute some fundamental groups using van Kampen’s theorem.

4.1. Fundamental groups of spheres. A first use of van Kampen’s theorem is
to show that spaces that should be simply connected are simply connected.

Proposition 4.1. Let Sn = {x ∈ Rn+1 : |x| = 1} be the n-sphere. When n ≥ 2,
π1(Sn) is trivial.

Proof. Notice that the subspace U = {x = (x0, . . . , xn) ∈ Sn : x0 6= 1} is home-
omorphic to Rn. Similarly, V := {x = (x0, . . . , xn) ∈ Sn : x0 6= −1} is homeo-
morphic to Rn. Thus U and V are contractible open sets, and their intersection is
path connected: it deformation-retracts to the equator {x0 = 0} ∼= Sn−1, which is
path connected when n − 1 > 0. By van Kampen, π1(Sn) is the push-out of two
homomorphisms to the trivial group; it is therefore trivial. �

4.2. A useful lemma.

Lemma 4.2. Suppose
H

f−−−−→ Gy yp
{1} −−−−→ P

is a pushout square. Then p is surjective, and its kernel is the normalizer of im f .

Proof. Put P ′ = G/N , where N is the normalizer of im f , and define p′ : G → P ′

to be the quotient map. It is easy to check that P ′ and p′ fit into a push-out square
for the homomorphisms f : H → G and H → {1}. Thus P is isomorphic to P ′ so
that p is identified with p′. �

In conjunction with van Kampen’s theorem, this lemma has the following con-
sequence.

Proposition 4.3. Suppose that X is the union of a path-connected open set U and
a simply connected open set V , with U ∩ V path-connected. Let x ∈ U ∩ V . Then
π1(X,x) is generated by loops in U . A based loop in U becomes trivial in π1(X) iff
it lies in the normal subgroup of π1(U, x) generated by loops in U ∩ V .

4.3. Fundamental groups of compact surfaces.

Proposition 4.4. Let T 2 be the 2-torus, RP 2 the real projective plane, K2 the
Klein bottle. Then

π1(T 2) ∼= Z2; π1(RP 2) ∼= Z/2; π1(K2) ∼= 〈a, b | aba−1b〉.
No two of these spaces are homotopy-equivalent.

Proof. These spaces X are all quotient spaces q : I2 → X of the square I2 ⊂ R2,
obtained by gluing together its sides in pairs. Take p in int(I2).

Let U = q(I2 \ {p}), and V = q(D) with D a small open disc containing p.
Thus U ∩V deformation-retracts to a circle and V is simply connected. By the last
proposition, π1(X) is generated by loops in the subspace U , which deformation-
retracts to q(∂I2).

Going anticlockwise round ∂I2, we label the sides as s1, s2, s3, s4 (as directed
paths).
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In T 2, q(s1) = q(s−1
3 ) and q(s2) = q(s−1

4 ). Thus U deformation-retracts to
a wedge of two circles a = q(s1) and b = q(s2), and ∂U ' s1 · s2 · s3 · s4 '
a · b ·a−1 · b−1. To apply van Kampen, note that π1(U ∩V ) = Z and π1(U) = 〈a, b〉.
The homomorphism Z → F2 induced by U ∩ V ↪→ U sends 1 to aba−1b−1. Thus,
by the last proposition,

π1(T 2) ∼= 〈a, b | aba−1b−1〉 ∼= Z2.

In K2, q(s1) = q(s3) and q(s2) = q(s−1
4 ). The argument is just the same as for the

torus, except that now the homomorphism Z→ F2 sends 1 to aba−1b. Thus

π1(K2) ∼= 〈a, b | aba−1b〉.
In RP 2, q(s1) = q(s3) and q(s2) = q(s4). Thus q(∂I2) is a single circle, and the
map q : ∂I2 → 1(∂I2) has degree 2. So π1(U) = Z and π1(U ∩ V ) = Z. The map
π1(U ∩ V )→ π1(U) corresponds to x 7→ 2x as a map Z→ Z. Hence

π1(RP 2) ∼= Z/2.
It follows easily that these three spaces are homotopically inequivalent: the abelian-
ized fundamental groups (in which everything commutes) are π1(T 2)ab ∼= Z2,
π1(RP 2)ab ∼= Z/2 and π1(K2)ab ∼= Z/2⊕ Z. �

As part of the last proposition, we showed π1(T 2) = Z2. We now compute π1

for a torus with n punctures.

Lemma 4.5. Let p1, . . . , pn be distinct points of T 2. There are isomorphisms

θn : π1(T 2 \ {p1, . . . , pn})→ Gn := 〈γ1, . . . , γn, a, b | aba−1b−1(γ1 · · · γn)−1〉
so that filling in pn induces the following commutative diagram:

π1(T 2 \ {p1, . . . , pn}) −−−−→ π1(T 2 \ {p1, . . . , pn−1})

θn

y yθn−1

Gn −−−−→
gn

Gn−1,

where gn(γn) = 1, gn(γi) = γi for i < n, gn(a) = a and gn(b) = b.

Proof. Apply van Kampen to a decomposition of T 2 \ {p1, . . . , pn} into a once-
punctured torus U and an (n+ 1)-punctured 2-sphere. �

Proposition 4.6. Let Σg be the closed orientable surface of genus g. Then

π1(Σg) ∼= 〈a1, b1, . . . , ag, bg | [a1, b1] · · · [ag, bg]〉,
where [a, b] := aba−1b−1. If p1, . . . , pn are distinct points in Σg then

π1(Σg \ {p1, . . . , pn}) ∼= 〈a1, b1, . . . , ag, bg, γ1, . . . , γn | [a1, b1] · · · [ag, bg] = γ1 · · · γn〉.

Proof. By induction on g. We have already proved it for g = 0 and for g = 1.
Decompose Σg \ {p1, . . . , pn} as the union of U ' Σg \ {p1, . . . , pn, q} and V '
T 2 \ {q′} along an annulus U ∩V (wrapping round q in U and around q′ in V ). By
induction on g, van Kampen, and the last lemma, we find that π1(Σg \{p1, . . . , pn})
has generators

a1, b1, . . . , ag−1, bg−1, γ1, . . . , γn, δ

coming from U ;
ag, bg, γn+1, δ

′
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coming from V ; a relation δ = δ′ from U ∩ V ; and relations

[a1, b1] · · · [ag−1, bg−1] = γ1 · · · γnδ, [ag, bg] = δ′−1γn+1

from U and V . It is easy to check that this system of generators and relations are
equivalent to those given. �

Another standard way to prove this is to think of Σg as an identification-space
of the 4g-gon.

4.4. The complement of a trefoil knot. The left-handed trefoil knot K is the
image of the embedding f : S1 → S3 = {(z, w) ∈ C2 : |z|2 + |w|2 = 1} given by

f(e2πit) = (
1√
2
e4πit,

1√
2
e6πit).

Proposition 4.7. π1(S3 \K) ∼= 〈a, b | a2b−3〉.

Proof. We decompose S3 as the union of two subspaces Y = {(z, w) : |z| ≥ |w|}
and Z = {(z, w) : |z| ≤ w}. Both are solid tori S1 × D2, and Y ∩ Z is a torus
S1 × S1. There results a decomposition S3 \K = (Y \K) ∪ (Z \K). Though the
sets in this decomposition are not open, van Kampen is applicable because we can
thicken up K to a ‘rope’ R, and then take thin open neighbourhoods of Y \R and
Z \ R which deformation-retract onto them. Now, Y \K deformation-retracts to
the ‘core’ circle |w| = 0, and Z \K to the core circle |z| = 0, while (Y \K)∩ (Z \K)
deformation retracts to a circle K ′ parallel to K inside the torus Y ∩ Z. Now K ′

wraps twice around the core circle in Y \K, three times around that in Z \K. Van
Kampen shows that π1(S3 \K) is a push-out of the diagram

Z 2←− Z 3−→ Z,

and this gives the presentation claimed. �

Exercise 4.1: An n-dimensional manifold is a Hausdorff space X covered by open sets
homeomorphic to Rn. Let X1 and X2 be connected n-dimensional manifolds. A
connected sum X1#X2 is constructed by choosing embeddings i1 : Dn → X1 and
i2 : Dn → X2 of the closed n-disc Dn, and letting

X1#X2 = (X1 \ i1(intD′))q (X2 \ i2(intD′))/ ∼,

D′ = 1
2D

n ⊂ Dn, where ∼ identifies i1(x) with i2(x) for all x ∈ Sn−1 = ∂D′.

(a) Prove that if n > 2 then π1(X1#X2) ∼= π1(X1) ∗ π1(X2).
(b) Let X be an iterated connected sum of r copies of S1 × Sn−1, where n ≥ 3.

Compute π1(X).
(c)* Given a finitely presented group G = 〈g1, . . . , gk | r1, . . . , rl〉, find a connected,

compact, 4-dimensional manifold M with π1(M) ∼= G. [Hint: Start with the
case of no relations. Use the fact that ∂(S1×D3) = S1×S2 = ∂(D2×S2).]

Exercise 4.2: Let K be the trefoil knot. We’ve seen that π1(S3 \K) = 〈a, b | a2 = b3〉.
How do you find a word representing a given loop in S3 \K? Find words representing a
meridian for K (i.e., the boundary of a small normal disc) and a longitude (parallel to
the knot; not unique!). Let Z be the the kernel of the homomorphism π1(S3 \K)→
〈a, b | a2, b3〉 which sends a to a and b to b. Show that Z ∼= Z, generated by a
longitude, and that Z is contained in the center of π1(S3 \K). [Interestingly, by an
earlier exercise we have 〈a, b | a2, b3〉 ∼= PSL2(Z).]
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Exercise 4.3: The braid group on 3 strings. In this extended exercise (based on one in
Serre’s book Trees) we’ll see that the following five groups are isomorphic:

• π1(S3 \K), where K is a (left-handed) trefoil knot.
• The group 〈a, b | a2 = b3〉.
• The algebraic braid group on 3 strings, 〈s, t | sts = tst〉.
• The geometric braid group on 3 strings B3, defined as the fundamental group

of the configuration space C3 of 3-element subsets of C.
• π1(C2 \ C), where C ⊂ C2 is the cuspidal cubic {(X,Y ) : X2 = Y 3}.

(a) We already know that π1(S3 \ K) ∼= 〈a, b | a2 = b3〉. Show that a 7→ sts,
b 7→ ts defines an isomorphism

〈a, b | a2 = b3〉 → 〈s, t | sts = tst〉.
(b) Take as basepoint {−2, 0, 2} ∈ C3. Define loops σ and τ in X3, σ(t) =
{−1 − eπit,−1 + eπit, 2} and τ(t) = {−2, 1 − eπit, 1 + eπit} for t ∈ [0, 1].
Let s = [σ] and t = [τ ] in B3. Check that sts = tst, so that one has a
homomorphism 〈s, t | sts = tst〉 → B3.

(b) C3 is the subspace of Sym3(C) (the quotient of C3 by the action of the
symmetric group S3 permuting coordinates) where the three points are dis-
tinct. Let Sym3

0(C) = {{a, b, c} ∈ Sym3(C) : a + b + c = 0}. Show that
Sym3(C) ∼= C × Sym3

0(C). Define a homeomorphism h : Sym3
0(C) → C2 by

sending {a, b, c} to the point (x, y) such that

(t− a)(t− b)(t− c) ≡ t3 + xt+ y.

Verify that the points a, b and c are distinct iff 4x3 + 27y2 6= 0. Deduce that
C3
∼= C× (C2 \ C), hence that B3

∼= π1(C2 \ C).
(d) Show that C2 \ C is homotopy-equivalent to S3 \ K, whence π1(C2 \ C) ∼=

π1(S3 \K).
(e)* Show that going round the full circle of homomorphisms, the resulting homo-

morphism π1(S3 \K)→ π1(S3 \K) is an isomorphism.
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5. Covering spaces

Another basic method of computing fundamental groups is to identify the space
X as the quotient X̃/G of a simply connected space X̃ by a discrete group G acting
freely on it by homeomorphisms. Under certain additional conditions, one then has
π1(X) ∼= G (just as π1(S1) = π1(R/Z) = Z). In this lecture we will explore how
covering spaces arise in practice. We also see how a covering map gives rise to
two groups: (i) its group of deck transformations, and (ii) the image of π1 of the
covering space in π1 of the base.

Definition 5.1. A covering map is a surjective map p : X̃ → X such that X has a
cover by open sets U with the property that p−1(U) is the disjoint union of open
sets, each of which is mapped by p homeomorphically onto U . The domain X̃ of a
covering map is called a covering space of X.

The fibre F = p−1(x) is a discrete space. For an open set U as in the definition,
and x ∈ U , there is a homeomorphism t : p−1(U)→ F × U such that pr2 ◦ t = p as
maps p−1(U) → U (t is called a trivialisation for p over U). Thus the fibres over
points of U are all homeomorphic, and hence, if X is path-connected, all the fibres
of p are homeomorphic. The covering map is trivial if there exists a trivialisation
over X.

Remark. In the theory of covering spaces it’s a useful safety precaution to assume
that all spaces are locally path connected (i.e., for any point x and any neighbour-
hood of x there is a smaller neighbourhood which is path connected).

Exercise 5.1: The following are covering maps:

(1) The quotient map R→ R/Z.
(2) The map S1 → S1, eit 7→ eint.
(3) The product of covering maps (e.g. Rn → (R/Z)n = Rn/Zn).
(4) The quotient map Sn → RPn.

Example 5.2. Let (X,x) be a based space. A covering space Y for S1 ∨ X can
be obtained by taking a family (Xn)n∈Z of identical copies of X, then letting Y be
the result of attaching Xn to R by identifying x ∈ Xn = X to n ∈ Z. The covering
map p : Y → X is given on R by the quotient map R → R/Z = S1 ⊂ S1 ∨X and
on Xn by the identification Xn = X.

Graphs. A graph is a topological space Γ obtained by the following procedure.
One takes a discrete space V (the vertices), a set E (the edges) and for each e ∈ E
a map ae : {0, 1} → V . One forms the identification space of V q

∐
e∈E [0, 1] in

which 0 ∈ [0, 1]e is identified with its image ae(0) ∈ V , and 1 ∈ [0, 1]e is identified
with ae ∈ V .

Example 5.3. A covering space of a graph is again a graph. For example S1 ∨ S1

is a graph with one vertex and 2 edges. The vertex has valency 4 (i.e., 4 intervals
emanate from it). Any covering space Γ of S1 ∨ S1 is a graph in which each vertex
has valency 4. The edges of Γ can be coloured red and blue so that each vertex
has two red and two blue intervals emanating from it. Moreover, Γ can be oriented
(i.e., each edge given a direction) so that at each vertex, exactly one red interval
is outgoing and exactly one blue interval is outgoing. Conversely any oriented,
coloured graph Γ with these properties defines a covering of S1 ∨ S1.
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5.1. Deck transformations.

Definition 5.4. Fix covering maps p1 : Y1 → X and p2 : Y2 → X. A map of
covering spaces from (Y1, p1) to (Y2, p2) is a map f : Y1 → Y2 such that p1 ◦ f = p2.
A deck transformation for a covering space p : Y → X is a map of covering spaces
h from (Y, p) to itself which is also a homeomorphism.

The inverse of a deck transformation is another deck transformation. Hence the
deck transformations form a group Aut(Y/X).

Example 5.5. In Example 5.2, the covering space p : Y → S1 ∨ X has Z as its
group of deck transformations. The generator is the ‘shift’ homeomorphism, acting
on R by t 7→ t+ 1 and sending Xn identically to Xn+1.

Coverings arise ‘in nature’ via group actions. Suppose given a continuous action
G× Y → Y of the discrete group G on the space Y .

Proposition 5.6. The quotient map q : Y → Y/G is a covering map provided the
action is a ‘covering action’: Y is covered by open sets V such that gV ∩ V = ∅ for
all g ∈ G \ {e}. If Y is path connected, the group of deck tranformations is G.

Proof. Given x ∈ Y , take a neighbourhood V of x as in the statement. We may
assume V is connected. Let U = q(V ). Then q−1(U) is the disjoint union of the
open sets gV for g ∈ G. Each is mapped bijectively to U ; the map is open by
definition of the quotient topology, hence a homeomorphism. This shows that q is
a covering map.

Any g ∈ G determines a deck transformation x 7→ g · x, and these give a ho-
momorphism G → G′, where G′ is the group of deck transformations. Since the
action is free, the kernel of this homomorphism is trivial. To see that it is surjec-
tive, suppose f is a deck transformation. Pick a point y ∈ Y , choose g ∈ G such
that f(y) = hg · y, where hg is the action of g. Then hg−1 ◦ f fixes y. By the last
theorem, G′ acts freely, hence hg−1 ◦ f = id, i.e. f = hg. �

5.2. Examples.

• The action of Zn on Rn by translations is a covering action (take the cover
to be by balls of radius 1/3).

• The action of the cyclic group Z/p on S2n−1 = {z ∈ Cn : |z| = 1}, where
the generator acts by scalar multiplication by e2πi/p, is a covering action.
Indeed, a non-trivial group element moves every point by a distance ≥ d
(for the Euclidean metric in Cn), where d = mink∈{1,...,p−1} |1− e2πik/p|,
hence the open sets S2n−1 ∩ B(z; d/2) (with |z| = 1) provide a suitable
cover. The quotient L2n−1(p) = S2n−1/(Z/p) is called a lens space.

• The last example generalises: if Y is compact and simply connected, and a
finite group G acts freely on Y , then π1(Y/G) ∼= G.

• If G is a compact, simply connected topological group, and Z ⊂ G a finite
subgroup, then the action of Z on G is a covering action. An interesting ex-
ample is G = SU(2) and Z = {±I} ⊂ G. The quotient PU(2) := SU(2)/Z
is isomorphic to SO(3). Indeed, PU(2) is the group of conformal symme-
tries of C ∪ {∞}, while SO(3) the group of orientation-preserving isome-
tries of S2. These symmetries coincide under the standard homeomorphism
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C ∪ {∞} = S2. Moreover, there is a homeomorphism

SU(2)→ S3 = {(α, β) ∈ C2 : |α|2 + |β|2 = 1}, (α, β) 7→
[

α β
−β̄ ᾱ

]
.

The involution A→ −A on SU(2) corresponds to the antipodal map on S3,
hence PU(2) ∼= RP 3.

Exercise 5.2: Do this exercise if you know the basic facts about smooth manifolds.
Suppose Y and X are smooth n-manifolds, and p : Y → X a smooth, proper map
whose derivative Dp : TxY → Tp(x)X is an isomorphism for all x ∈ Y . Then p is a
(finite-sheeted) covering map.

Exercise 5.3: Show that T 2 \ {4 points} is a 2-sheeted covering of S2 \ {4 points}.
Some possible approaches are (a) a direct topological argument; (b) the Weierstrass
℘-function from complex analysis; (c) a pencil of divisors of degree 2 on an elliptic
curve.

5.3. Unique path lifting.

Lemma 5.7. Let p : X̃ → X be a covering map. Fix basepoints x ∈ X and
x̃ ∈ p−1(x).

(1) If γ : I → X a path, and γ(0) = x, then there is a unique path γ̃ : I → X̃
such that γ̃(0) = x which lifts γ in the sense that p ◦ γ̃ = γ.

(2) A homotopy Γ: I2 → X lifts uniquely to a map Γ̃ : I2 → X̃ once we specify
Γ̃(0, 0).

(3) The map p∗ : π1(X̃, x̃)→ π1(X,x) is injective.
(4) If x̃′ also lies in p−1(x) then p∗(π1(X̃, x̃′)) and p∗(π1(X̃, x̃)) are conjugate

subgroups of π1(X,x).
(5) All conjugates of p∗(π1(X̃, x̃)) arise in this way.

Proof. (1) The proof is exactly the same as the proof of unique path lifting for
R→ S1 that we gave in our proof that π1(S1) = Z. Similarly (2).

(3) If p∗(γ0) and p∗(γ1) are homotopic rel endpoints then the unique lift of the
homotopy to X̃ defines a homotopy rel endpoints between γ0 and γ1.

(4) Choose a path γ in X̃ joining x̃′ to x̃. Then we have

p∗(π1(X̃, x̃′)) = (p∗γ) · p∗(π1(X̃, x̃)) · (p∗γ)−1.

(5) Follows from (1). �

Exercise 5.4: Write out the missing details.

Exercise 5.5: A surjective map p : Y → X which has unique path-lifting need not be
a covering map. (You may choose Y not to be locally path connected. For a harder
exercise, find an example where Y is locally path connected.)

Let us summarise where we have got to. A covering space p : X̃ → X gives rise
(a) to a group of deck transformations Aut(X̃/X); and (b) to a conjugacy class of
subgroups of π1(X,x), the images of π1(X̃, x̃), for basepoints x̃ ∈ p−1(x).

Example 5.8. If X̃ = X = S1, and p is the covering eit 7→ eint, then Aut(X̃/X) =
Z/n (the generator being multiplication by e2πi/n), while the image of π1(X̃) in
π1(X) is nZ ⊂ Z. We see in this example that the image of π1(X̃) in π1(X) is
a subgroup whose index is equal to the number of sheets of the covering. It is a
normal subgroup, and the quotient group is isomorphic to Aut(X̃/X). If we take
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X̃ = R, with p : R → R/Z = S1 the quotient map, then Aut(X̃/X) = Z and
π1(R) = {1}, so again Aut(X̃/X) = π1(X)/p∗π1(X̃).

In the next lecture we will see that these observations generalise (except that
the image of π1(X̃) is not always normal). In particular, if X̃ is simply connected
then Aut(X̃/X) ∼= π1(X).
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6. Classifying covering spaces

In the previous lecture we introduced covering spaces. Today we classify the
covering spaces of a given space X.

The following theorem could be called the fundamental lemma of covering space
theory.

Theorem 6.1 (lifting criterion). Let p : X̃ → X be a covering map, with X̃ path-
connected, and f : B → X a map from a path-connected and locally path-connected
space B. Choose b ∈ B and x̃ ∈ X̃ such that p(x̃) = f(b). Then f lifts to a map
f̃ : B → X̃ with p ◦ f̃ = f and f̃(b) = x̃ if and only if

f∗(π1(B, b)) ⊂ p∗(π1(X̃, x̃))

in π1(X, f(b)). When it exists, the lift is unique.

Proof. If the lift exists then p∗ ◦ f̃∗ = f∗, hence im f∗ ⊂ im p∗. Uniqueness follows
from the uniqueness of lifts of paths. We now consider existence. Take y ∈ B and
a path γ from b to y. We attempt to define f̃(y) = δ(1), where δ : B → X̃ is the
unique lift of f ◦ γ with δ(0) = x̃. If this make sense and is continuous then it will
certainly fulfil the requirements. We need to prove that δ(1) is independent of the
choice of γ. If γ′ is another such path then γ followed by (γ′)−1 is a loop l in B.
But if f∗(π1(Y, y)) ⊂ p∗(π1(X̃, x̃)) then l is homotopic rel endpoints to the image
of a loop ζ in X̃. Lifting the homotopy gives a homotopy rel endpoints between ζ
and the lift of γ ∗ (γ′)−1, which shows that the lift δ′ of f ◦ γ′ ends at the same
point as does f ◦ γ. Continuity of f follows from local path-connectedness of B (cf.
Hatcher). �

From now on, the base spaces of our covering maps will be assumed path-
connected and locally path-connected.

Corollary 6.2. If p1 : Y1 → X and p2 : Y2 → X are covering maps, and p(y1) =
x = p2(y2), then there exists a homeomorphism h : Y1 → Y2 with p2 ◦ h = p1 and
h(y1) = y2 if and only if p1∗π1(Y1, y1) = p2∗π1(Y2, y2) in π1(X,x). Hence two
coverings of X are isomorphic iff they define conjugate subgroups of π1(X,x).

Corollary 6.3. Any two simply connected covering spaces of X are isomorphic.

Because of this result, we shall refer to a simply connected covering space of X
as a universal cover of X.

Corollary 6.4. If p : X̃ → X is a universal cover, Aut(X̃/X) acts freely and tran-
sitively on any fibre p−1(x). We obtain an isomorphism Ix̃ : π1(X,x)→ Aut(X̃/X)
by fixing a base-point x̃ ∈ p−1(x), then mapping [γ] to the unique deck transforma-
tion which sends x̃ to γ̃(1), γ̃ being the unique lift of γ with γ̃(0) = x̃.

Proof. According to the lifting criterion, maps h : X̃ → X̃ intertwining p are nec-
essarily homeomorphisms, and they are in natural bijection with the fibre p−1(x).

�

6.1. An equivalence of categories. We now formulate the classification theorem
for coverings of X. In a nutshell, this says that isomorphism classes of path con-
nected covering spaces correspond to conjugacy classes of subgroups of π1(X,x).
We give a sharper statement, which classifies not only the coverings, but also the
maps between them.
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We shall define two categories and prove their equivalence. An equivalence of
categories F : C → C′ is a functor such that there exists a functor G : C′ → C so
that F ◦ G and G ◦ F are naturally isomorphic to the identity functors on C′ and
C respectively. A standard result in category theory says that F is an equivalence
provided that (i) F∗ : Hom(X,Y ) → Hom(F(X),F(Y )) is bijective for all objects
X and Y , and (ii) every object of C′ is isomorphic to some C(X).

Definition 6.5. Let G be a group. Its orbit category O(G) is the category whose
objects are the subgroups H ≤ G. For any H, the set G/H of left cosets of H
is a transitive G-set. We define the morphisms H → K to be maps of G-sets
G/H → G/K.

Definition 6.6. If X is a path-connected space, we define a category Cov(X)
whose objects are path-connected covering spaces p : Y → X and whose morphisms
are maps of covering spaces.

Theorem 6.7. Suppose that (X,x) is a based space. Fixing a universal cover
p : X̃ → X and a basepoint x̃ ∈ p−1(X) determines an equivalence of categories

G : O(π1(X,x))→ Cov(X).

Proof. We define a functor G : O(π1(X,x)) → Cov(X). Thus let X̃ → X be a
simply-connected covering space, and fix a basepoint x̃ over x ∈ X. Path-lifting
starting at x̃ defines an isomorphism Ix̃ : G → Aut(X̃/X) where G = π1(X,x).
Take H ⊂ π1(X,x), and define G(H) = X̃/Ix̃(H). It comes with a projection map
G(H)→ X, induced by p : X̃ → X, and this is certainly a covering. Its fibre over x
is canonically identified with G/H, and π1(G(X), [x̃]) maps to H under the covering
map.

Every path-connected covering Y → X is isomorphic to G(H) for some H.
Indeed, we take H to be the image of π1(Y, y) in π1(X,x) for some y lying over x,
cf. Corollary 6.2.

If K is another subgroup, and f : G/H → G/K a map of G-sets, let f(H) = γK.
Then, for all g ∈ G, we have f(gH) = gγK. Notice that if h ∈ H then f(hH) =
hγK = γK, hence γ−1Hγ ⊂ K; conversely, an element γ such that γ−1Hγ ⊂ K
defines a map of G-sets.

We shall define G(f) via the lifting criterion. We are looking for a map X̃/Ix̃(H)→
X̃/Ix̃(K) covering the identity on X. Such a map will be unique once we specify its
effect on a point. For existence, take a basepoint z ∈ X̃/Ix̃(H) such that the image
of π1(X̃/Ix̃(H), z) in G is γ−1Hγ (cf. Lemma 5.7, (5)). By the lifting criterion,
there is a unique map of covering spaces X̃/Ix̃(H) → X̃/Ix̃(K) which sends z to
[x̃]. This is G(f). It’s straightforward to check this gives a functor.

It remains to see that G gives a bijection between morphism sets. This is another
application of the lifting criterion, but we omit the details. �

Let us spell out some aspects of this correspondence.

• At one extreme, we can consider the trivial subgroup {1} ⊂ G, which
corresponds to the universal cover. At the other extreme, G ⊂ G gives the
trivial cover X → X.

• In general, the fibre of the covering G(H) corresponding to H ≤ G is G/H.
Thus finite index subgroups correspond to coverings with finite fibres.
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• We can recover the conjugacy class of H ≤ G from G(H) as the image of
π1(G(H)) in π1(X,x). (To recover H on the nose, we have to remember
the basepoint [x̃] coming from x̃ ∈ X̃.)
• The normal (or regular, or Galois) coverings of X are those coverings
q : Y → X for which q∗π1(Y ) is a normal subgroup of G. Equivalently,
Aut(Y/X) acts transitively on the fibre. A normal covering determines an
actual subgroup, not just a conjugacy class of subgroups.

The similarity of the classification theorem with the fundamental theorem of Galois
theory is not coincidental; the theory of étale maps in algebraic geometry unites
them. In particular, finite extensions of the function field K(X) of a variety X
correspond to finite (étale) coverings of X.

6.2. Existence of a simply connected covering space. Under very mild hy-
potheses, a simply connected covering exists. Assume X locally path connected.

Proposition 6.8. Suppose that X admits a covering map p : X̃ → X from a simply
connected space X̃. Then X is semi-locally simply connected, meaning that each
x ∈ X has a path-connected neighbourhood U such that im(π1(U) → π1(X)) is
trivial.

Proof. Let U be a neighbourhood over which p is trivial. Then any loop γ in U
lifts to a loop in X̃, which is nullhomotopic (rel ∂I). Projecting the nullhomotopy
to X, we see that γ is nullhomotopic in X. �

Exercise 6.1: Find a path connected, locally path connected space which is not semi-
locally simply connected.

Now fix a basepoint x ∈ X. Define X̃ as the set of homotopy classes [γ], where
γ : I → X with γ(0) = x and [γ] its homotopy class rel ∂I. Define p : X̃ → X to
be the evaluation map [γ] 7→ γ(1). The topology on X̃ ought to be generated by
the ‘path components’ of the sets p−1(V ) with V ⊂ X open. Path components do
not make sense a priori, but we can make sense of them, via path-lifting, when V
is path connected and im(π1(V )→ π1(X)) is trivial.

Proposition 6.9. If X is path-connected, locally path-connected and semi-locally
simply connected then p : X̃ → X is a covering map and X̃ is simply connected.
Thus X admits a simply connected covering space.

Exercise 6.2: Make the topology on X̃ more precise, then prove the proposition.

Exercise 6.3: (From May’s book.) Identify all index 2 subgroups of the free group F2.
Show that they are all free groups and identify generators for them.

Exercise 6.4: (a) The universal cover of the torus T 2 is R2. Identify all the deck
transformations and hence determine (once again) the fundamental group. Which
surfaces can cover T 2? (b) Show that the Klein bottle is also covered by R2; identify
the deck transformations and hence the fundamental group.

Exercise 6.5: Let p : Y → X be a covering (with Y path connected and X locally path

connected) such that p∗π1(Y, y) = H ⊂ G = π1(X, p(y)). Show that Aut(X̃/X) ∼=
(NGH)/H, where NGH = {g ∈ G : gHg−1 = H}.

For the next exercise, you may use the following fact: the quotient SU(2)/{±I}
is isomorphic, as a topological group, to SO(3).



24 TIM PERUTZ

Exercise 6.6: Define a regular tetrahedron as a set of four distinct, unordered, equidis-
tant points on S2 ⊂ R3. Let T be the space of regular tetrahedra. (a) Show that
π1(T ) has a central subgroup Z ∼= Z/2 such that π1(T )/Z ∼= A4. (b) Identify several
(at least 5) pairwise non-isomorphic, path connected covering spaces of T , describing
them geometrically. (c) Show that the fundamental group of the space P of regular
icosahedra (unordered collections of 20 distinct points on S2 forming the vertices of a
regular icosahedron) has order 120, but that the abelianization π1(P)ab has order at
most 2. (In fact it is trivial.) [Recall that the icosahedral group A5 is simple.]

Exercise 6.7: Rotation about a fixed axis, by angles increasing from 0 up to 2π, deter-
mines a loop γ in SO(3). Show that γ ∗ γ is nullhomotopic.
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II. Singular homology theory

7. Singular homology

We explain a fundamental construction of algebraic topology—singular homology.
We compute the 0th homology groups in terms of the path components of the space,
and show that π1 maps onto the first homology group.

Precursors of homology theory go back to the 18th Century and Euler’s formula
v − e+ f = 2 for the numbers of vertices, edges and faces of a convex polyhedron.
Its systematic development began with Poincaré in the 1890s. The definition of
singular homology we shall give is due to Eilenberg (1944), but it rests on fifty
years of exploration and refinement by many mathematicians. Every aspect of it is
the result of a gradual process of experiment and abstraction. It is perfectly simple
and, at first, perfectly mysterious.

7.1. The definition. The geometric n-simplex is

∆n = {(x0, . . . , xn) ∈ [0, 1]n+1 :
∑

xi = 1}.

It is the convex hull [v0, . . . , vn] of the points vi = (0, . . . , 0, 1i, 0, . . . , 0).
Define the ith face map

δi : ∆n−1 → ∆n, (x0, . . . , xn−1) 7→ (x0, . . . xi−1, 0, xi, . . . , xn−1).

It is homeomorphism onto the face [v0, . . . , v̂i, . . . , vn].
An n-simplex in the space X is a continuous map σ : ∆n → X. Let Σn(X) be

the set of all n-simplices. Define the nth singular chain group Sn(X) as

Sn(X) = ZΣn(X),

the free abelian group generated by Σn(X). It is the group of finite formal sums∑
i niσi with ni ∈ Z and σi ∈ Σn(X). For n > 0, define ∂n : Sn → Sn−1 as the

Z-linear map such that

∂nσ =
n∑
i=0

(−1)i(σ ◦ δi), σ ∈ Σn(X).

In alternative notation, ∂nσ =
∑n
i=0 (−1)i(σ|[v0,...,v̂i,...,vn]).

Lemma 7.1. ∂n ◦ ∂n+1 = 0.

Proof. This is a consequence of the following relations among the face maps:

δi ◦ δj = δj ◦ δi−1, j < i.

For any n+ 1-simplex σ, we have

∂n ◦ ∂n+1σ =
∑

0≤j≤n

∑
0≤i≤n+1

(−1)i+jσ ◦ δi ◦ δj

=
∑

0≤j<i≤n+1

(−1)i+jσ ◦ δi ◦ δj +
∑

0≤i≤j≤n

(−1)i+jσ ◦ δi ◦ δj

=
∑

0≤j<i≤n+1

(−1)i+jσ ◦ δj ◦ δi−1 +
∑

0≤i≤j≤n

(−1)i+jσ ◦ δi ◦ δj

=
∑

0≤k≤l≤n

(−1)k+l+1σ ◦ δk ◦ δl +
∑

0≤i≤j≤n

(−1)i+jσ ◦ δi ◦ δj

=0.
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Since simplices generate Sn+1(X), the result follows. �

It is convenient to let ∂0 : S0(X)→ 0 be the zero-map. The nth singular homol-
ogy of X is the abelian group

Hn(X) := ker ∂n/ im ∂n+1.

Elements of ker ∂n are called n-cycles; elements of im ∂n+1 are n-boundaries. By
the lemma, an n-boundary is an n-cycle, and the nth homology is the group of
n-cycles modulo n-boundaries.

In future lectures we will develop these groups systematically. Today we will
look only at the zeroth and first homology groups.

7.2. The zeroth homology group.

Proposition 7.2. The map ε : S0(X)→ Z, ε(
∑
niσi) =

∑
ni induces a surjection

H0(X) → Z provided only that X is non-empty. When X is path-connected, this
map is an isomorphism.

Proof. We have to show that ε descends to H0(X) = S0(X)/ im ∂1. If τ is a 1-
simplex then ∂τ = τ ◦ δ0 − τ ◦ δ1. Thus ε(∂τ) = 1 − 1 = 0. Hence ε(im δ1) = 0,
and ε descends to H0(X). For any 0-simplex σ, ε(nσ) = n, so ε is surjective. If X
is path-connected, take s =

∑
niσi ∈ ker ε. We may assume ni = ±1 for all i. The

number of + and − signs is equal, so we may partition the 0-simplices into pairs
(σi, σj) with ni = 1 and nj = −1. But σi − σj is the boundary of a 1-simplex (i.e.,
of a path), since X is path-connected. Hence s ∈ im ∂1. �

Exercise 7.1: Show that, in general, Hn(X) =
⊕

Y ∈π0(X)Hn(Y ), where π0(X) is the

set of path-components of X. Thus H0(X) ∼= Zπ0(X).

So, whilst S0(X) is typically very large (often uncountably generated), H0(X)
is finitely generated for all compact spaces.

7.3. The first homology group. There’s a homeomorphism I → ∆1 given by
t 7→ tv1+(1−t)v0. Thus a path γ : I → X defines a 1-simplex γ̂. When γ(0) = γ(1),
γ̂ is a 1-cycle.

Lemma 7.3. Fix a basepoint x ∈ X. The map γ 7→ γ̂ induces a homomorphism

h : π1(X,x)→ H1(X).

Proof. A constant loop is the boundary of a constant 2-simplex. Loops which are
homotopic rel endpoints give homologous 1-simplices (by subdividing a square into
two triangles and using the fact that constant loops are boundaries). Thus h is
well-defined. If f and g are composable paths, the composition f ∗ g maps under
h to f̂ + ĥ: define a 2-simplex σ = (f ∗ g) ◦ p : ∆2 → X, where p is the projection
[v0, v1, v2]→ [v0, v2], t0v0 + t1v1 + t2v2 7→ t1v1 + t2v2. We have ∂σ = ĝ− f̂ ∗ g+ f̂ .

�

The map h is sometimes called the Hurewicz map.

Proposition 7.4. The kernel of the Hurewicz map h : π = π1(X,x) → H1(X)
contains the commutator subgroup [π, π], and hence h induces a homomorphism

πab := π/[π, π]→ H1(X).

When X is path-connected, h is surjective.
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Proof. Since h is a homomorphism, h(f ·g ·f−1 ·g−1) = h(f)+h(g)−h(f)−h(g) = 0.
Thus [π, π] ⊂ kerh. To obtain surjectivity in the path-connected case, note that
the group of 1-cycles is generated by loops, where a loop is a 1-cycle ±

∑
i∈Z/N σi

with δ1σi + δ0σi+1 = 0 for all i ∈ Z/N . Thus it suffices to show that any loop lies
in the image of h. But any loop is homologous to a loop based at x (insert a path
γ from x to σ0(0), and γ−1 from σN−1(1) to x). The composition of all the paths
making up the based loop is homologous to their sum, and it lies in im(h). �

Example 7.5. Any simply connected space X has H1(X) = 0.

Remark. By analogy, one can look at the group H2(X)/s(X), where s(X) ⊂ H2(X)
is the subgroup generated by the ‘spherical cycles’: those represented by a map from
a tetrahedron (built from four 2-simplices) into X. This group is zero when X is
simply connected. A theorem of Hopf [Comment. Math. Helv. 14, (1942), 257–309]
says that, for a general path-connected X, H2(X)/s(X) depends only on π1(X).
It is naturally isomorphic to a group which is now understood as H2(π1(X)), the
second group homology of π1(X). Indeed, group homology was developed partly in
response to Hopf’s theorem. See, e.g., Brown, Cohomology of groups (GTM 87).



28 TIM PERUTZ

8. Simplicial complexes and singular homology

We show that a singular n-cycle can be represented by a map from an n-dimensional
∆-complex. We complete our calculation of H1 in terms of π1.

8.1. ∆-complexes.

Definition 8.1. A ∆-complex (or semi-simplicial complex) is a space X equipped
with sets Sn, empty for n� 0, and for each n and each α ∈ Sn a continuous maps
σnα : ∆n → X. We require that (i) σnα is injective on int(∆n), and X (as a set) is
the disjoint union over n and α of the images σnα(int(∆n); (ii) when n > 0, the
restriction to a face, σnα ◦ δi, is equal to σn−1

β for some β ∈ Sn−1; and (iii), a set
U ⊂ X is open iff (σnα)−1(U) is open for all n and all α.

There are a number of connections between ∆-complexes and singular homology.
If a space is given the structure of a ∆-complex, there is a distinguished sub-space
Ssimpn (X) ⊂ Sn(X), spanned by the n-simplices σnα. One has ∂(Ssimpn )(X) ⊂
Ssimpn−1 (X), so it makes sense to form the simplicial homology group

Hsimp
n (X) =

ker(∂n : Ssimpn (X)→ Ssimpn−1 (X))

im(∂n+1 : Ssimpn+1 (X) ⊂ Ssimpn (X)
.

This comes with a natural homomorphism Hsimp
n (X) → Hn(X), induced by the

inclusion Ssimpn (X)→ Sn(X).
Exercise 8.1: Think of S2 as a tetrahedron, i.e., a ∆-complex with four 2-simplices, six
1-simplices and four 0-simplices. Show that for this structure

Hsimp
0 (S2) = Z, Hsimp

1 (S2) = 0, Hsimp
2 (S2) = Z, Hsimp

>2 (S2) = 0.

Exercise 8.2: Compute Hsimp
∗ for the spaces T 2, RP 2 and K2, each thought of as a

∆-complex with two 2-simplices (and some 1- and 0-simplices).

Remark. You may like to keep in mind the following fact, even though it’s not
part of the logical development of this course: the map Hsimp

n (X) → Hn(X) an
isomorphism. So, for example, the homology of a ∆-complex is finitely generated.

The following simple observation gives some geometric insight into singular ho-
mology.

Lemma 8.2. Let z be a singular n-cycle in X, so ∂nz = 0. Write it as z =∑N
i=1 εiσi with εi = ±1. Then there is an ∆-complex Z, with precisely N n-

simplices (τ1, . . . , τN ) and no higher-dimensional simplices, and a map f : Z → X,
such that (i)

∑
εiτi represents a simplicial n-cycle for Z, and (ii) σi = f ◦ τi for

each i.

Proof. Since ∂nz = 0, each face σi ◦ δj must cancel with another face σ′i ◦ δj′ .
Thus, we can partition the set of faces of all σi into pairs. We define a ∆-complex
Z by gluing N n-simplices together along their faces, paired up in the way just
determined. This has the right properties. �

More generally, if ∂nz = y, we can build a ∆-complex and a map from it into X
so that the summed boundary of the n-simplices in the complex maps to X as the
cycle y.
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8.2. The Hurewicz map revisited. Last lecture, we introduced the ‘Hurewicz
map’ h : π1(X)ab → H1(X) and proved its surjectivity (assuming X path con-
nected). We did not analyse its kernel. We now finish the job.

Theorem 8.3. When X is path-connected, the Hurewicz map h : π1(X)ab → H1(X)
is an isomorphism.

Example 8.4. • Recall that π1(S1) ∼= Z. Since this group is already abelian,
H1(S1) ∼= Z also.
• Recall that π1(T 2) = π1(T 2)ab ∼= Z2, π1(K2)ab ∼= Z⊕ Z/2 and π1(RP 2) =
π1(RP 2)ab ∼= Z/2, where T 2 is the 2-torus, K2 the Klein bottle, and RP 2

the real projective plane.
• Recall that the closed, oriented surface Σg of genus g has

π1(Σg) ∼= 〈a1, . . . , ag; b1, . . . , bg | [a1, b1] · · · [ag, bg]〉.
Thus H1(Σg) ∼= Z2g, generated by the classes of a1, . . . , ag and b1, . . . , bg.

Proof of the theorem. Take a loop γ ∈ kerh: say γ = ∂2β. We will show that [γ] is
a product of commutators in π, hence lies in [π, π]. We have already proved that
h is onto, so this will complete the proof. But we can build from the 2-chain β a
2-dimensional ∆-complex K, and a map f : K → X, with the following properties:
if z is the sum of the 2-simplices, then ∂2z = σ for a 1-simplex σ such that f ◦σ = γ.
Moreover, the image of σ in K is a loop ∂K. It suffices, then, to show that ∂K
is in the commutator subgroup of π1(K, b) (for the obvious basepoint b ∈ ∂K), for
then the corresponding result will hold in X just by applying f . Thus we deduce
the theorem from the following lemma. �

Lemma 8.5. Let K be a compact, connected, 2-dimensional ∆-complex. Suppose
z is the sum of the 2-simplices, and that ∂2z =

∑N
i=1 σi for some 1-simplices σi

such that σi(1) = σi+1(0), i ∈ Z/N . Fix a basepoint b; take it to be a vertex lying
on ∂K. Then ∂2z represents an element of π = π1(K, b). This element lies in the
normal subgroup [π, π] generated by commutators.

Proof. First observe (exercise!) that in general, if we have a free homotopy through
loops γt : S1 → X, then we have two fundamental groups π = π1(X, γ0(1)) and
π′ = π1(X, γ1(1)); and [γ0] ∈ [π, π] ⊂ π iff [γ1] ∈ [π′, π′] ⊂ π′.

We now proceed by induction on the number of 2-simplices. The lemma is
obvious when there is only one 2-simplex. When there is more than one, remove a
2-simplex σ adjacent to the boundary which has the basepoint as one of its vertices,
so as to create a new ∆-complex K’ which again satisfies the hypotheses(!). Pick a
new basepoint b′ on ∂K ′ which was one of the vertices of σ. By induction, ∂K ′ is
a product of commutators in π1(K ′, b′), hence in π1(K, b′). But ∂K is homotopic
through loops to ∂K ′, so the result follows from our observation. �

Remark. The lemma is connected with the geometric interpretation of the algebraic
notion of ‘commutator length’. In general, for a group π, the commutator length
cl(γ) of γ ∈ [π, π] is the least integer g such that γ is the product of g commutators
in π. If π = π1(X,x), then one can show that cl(γ) is the minimal genus g of a
compact oriented surface K bounding γ. Here by a compact oriented surface I mean
a ∆-complex K, equipped with a map f : K → X, which satisfies the conditions of
the lemma and which is locally homeomorphic to R2. The genus of K is half the
rank of Hsimp

1 (K).
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9. Homological algebra

Having introduced singular homology, we now need an adequate algebraic lan-
guage to describe it.

9.1. Exact sequences. We shall work with modules over a base ring R, which
we will assume to be commutative and unital. We write 0 for the zero-module. A
sequence of R-modules and linear maps

A
a→ B

b→ C

is exact if ker b = im a. A longer sequence of maps is called exact if it is exact at
each stage.

• 0→ B
b→ C is exact iff b is injective.

• A a→ B → 0 is exact iff a is surjective.
• 0→ A

a→ B → 0 is exact iff a is bijective, i.e., iff a is an isomorphism.
• Exact sequences of the form

0→ A
a→ B

b→ C → 0,

are called short exact sequences. In such a sequence, coker a = B/ im a =
B/ ker b. But b induces an isomorphism B/ kerB → im b = C. Thus a is
injective with cokernel C, while b is surjective with kernel A.
• A short exact sequence is called split if it satisfies any of the following

equivalent conditions: (i) there is a homomorphism s : C → B with bs =
idC ; (ii) there is a homomorphism t : B → A with t◦a = idA; or (iii) there is
an isomorphism f : B → A⊕C so that a(x) = f(x, 0) and b(f−1(x, y)) = y.
• If the six-term sequence

0→ A
a→ B

b→ C
c→ D → 0

is exact then a induces an isomorphism A ∼= ker b while c induces an iso-
morphism D ∼= coker b.

Exact sequences are useful because if one has partial information about the groups
and maps in a sequence (in particular, the ranks of the groups) then exactness helps
fill the gaps.

Example 9.1. Suppose one has an exact sequence of Z-modules

0→ Z i→ A
p→ Z/2→ 0.

What can one say about A (and about the maps)? Choose x ∈ A with p(x) 6= 0.
Then 2x ∈ ker p = im i. There are two possibilities:

(i) 2x = i(2k) for some k. Let x′ = x − i(k). Then 2x′ = 0. We can then
define a homomorphism s : Z/2 → A with p ◦ s = id by sending 1 to x. Thus the
sequence splits, and so may be identified with the ‘trivial’ short exact sequence
0→ Z→ Z/2⊕ Z→ Z/2→ 0.

(ii) 2x = i(2k + 1) for some k. Let x′ = x − i(k). Then 2x′ = i(1) and
p(x′) = p(x) 6= 0. Given y ∈ A, either y = i(m) for some m, in which case
y = 2mx′, or else y − x′ = i(m) for some m, in which case y = (2m + 1)x′. Thus
A = Zx′. Moreover, x′ has infinite order (since Zx′ contains im i). So the sequence
may be identified with the sequence 0 → Z → Z → Z/2 → 0, in which the map
Z→ Z is multiplication by 2 and Z→ Z/2 is the quotient map.
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9.2. Chain complexes. A chain complex over R is a collection {Cp}p∈Z of R-
modules, together with linear maps dp : Cp → Cp−1, called differentials, satisfying
dp−1 ◦ dp = 0. We write C∗ for the sum

⊕
p Cp, which is a graded module, and

d =
⊕
dp : C∗ → C∗ (an endomorphism map which lowers degree by 1, satisfying

d2 = 0). We define the homology

H(C∗) = ker d/ im d.

Notice that ker d =
⊕

p ker dp and im d =
⊕

im dp, so H(C∗) =
⊕

pHp(C∗), where
Hp(C∗) = ker dp/ im dp+1.

Elements of Zp(C) := ker dp are called p-cycles; elements of Bp(C) := im dp+1,
p-boundaries. If H(C∗) = 0, we say that C is acyclic.

A chain map from (C∗, dC) to (D∗, dD) is a linear map f : C∗ → D∗ such
that f(Cp) ⊂ Dp and dD ◦ f = f ◦ dC . A chain map induces homomorphisms
Hp(f) : Hp(C∗)→ Hp(D∗). A chain map which induces an isomorphism on homol-
ogy is called a quasi-isomorphism.

9.2.1. Chain homotopies. We need a criterion for two chain maps f and g : C∗ →
D∗ to induce the same map on homology. For this we introduce the notion of
chain homotopy. A chain homotopy from g to f is a collection of linear maps
hp : Cp → Dp+1 such that

dD ◦ hp + hp−1 ◦ dC = f − g.
If x ∈ Zp(C) then f(x) = g(x) + dD(hpx), hence [f(x)] = [g(x)] ∈ H(D∗). If, for
example, there is a chain homotopy from f : C∗ → C∗ to the identity map idC , then
f is a quasi-isomorphism. If there is a null-homotopy, i.e., a chain homotopy from
f to the zero-map, then f induces the zero-map on homology. If both possibilities
occur then C∗ must be acyclic, i.e., H∗(C) = 0.

9.2.2. Short and long exact sequences. We study the effect of passing to homology
on a short exact sequence

0→ A∗
a→ B∗

b→ C∗ → 0

of chain complexes and chain maps.

Lemma 9.2. (i) The sequence Hp(A)
Hp(a)→ Hp(B)

Hp(b)→ Hp(C) is exact.
(ii) Take x ∈ Ap with dAx = 0. Then [x] ∈ kerHp(a) iff there exists y ∈ Bp+1

such that a(x) = dBy.
(iii) Take z ∈ Cp with dCz = 0. Then [z] ∈ imHp(b) iff there exists y ∈ Bp−1

such that b(y) = z and dBy = 0.

Proof. (i) Take y ∈ Bp with dBy = 0 and b(y) = dCz for some z ∈ Cp+1. Then
z = b(y′), say, and b(y − dBy′) = dC(z − b(y′)) = 0, so y − dBy′ = a(x) for some
x ∈ Ap, i.e. y ∈ im a+ im dB , as required.

(ii) is obvious, and (iii) almost so. �

Points (ii) and (iii) can be pushed considerably further. Define the connecting
homomorphism

δ : Zp(C)→ Hp−1(A)
as follows:

δ(z) = [x] when there exists y ∈ Bp with b(y) = z and a(x) = dBy.



32 TIM PERUTZ

Lemma 9.3. δ is a well-defined map.

Proof. Note first that, since b is onto, there is some y with b(y) = z; and b(dBy) =
dC(by) = dCz = 0, hence dBy ∈ ker b = im a. Thus suitable y and x exist.
Moreover, x is determined by y, because of the injectivity of a. If b(y) = b(y′) = z
then y−y′ ∈ ker b = im a, so y = y′+a(x′) for some x′, and dBy = dBy

′+dBa(x′) =
dBy

′ + a(dAx′). Thus replacing y by y′ has the effect of replacing x by x + dAx
′,

so the homology class [x] is well-defined. �

Linearity of δ is clear. Note that δ maps Bp(C) to 0, and hence descends to a
map on homology,

δ : Hp(C)→ Hp−1(A).

Theorem 9.4. The short exact sequence of chain complexes

0→ A∗
a→ B∗

b→ C∗ → 0

induces an exact sequence

· · · → Hp(A) Ha→ Hp(B) Hb→ Hp(C) δ→ Hp−1(A) Ha→ Hp−1(B) Hb→ Hp−1(C)→ · · · .

Proof. We have already established exactness at Hp(C) and well-definedness of the
connecting map δ.

Exactness at Hp(C): Say [z] ∈ ker δ. This means that z = b(y) and a(dAx′) =
dBy for some x′ ∈ Ap. Then dB(y − ax′) = 0, and b(y − ax′) = z, so z ∈ im b.

Exactness at Hp−1(A): Let x ∈ Zp−1(A), and suppose that ax = dBy. Then
[x] = δ(b(y)). �

Exercise 9.1: We consider chain complexes (C∗, δ) over a field k such that dimkH∗(C) <
∞. The Euler characteristic of C∗ is then defined as the alternating sum

χ(C∗) =
∑
p

(−1)p dimkHp(C).

(i) Show that when
∑
p dimk Cp <∞, one has χ(C∗) =

∑
p (−1)p dimk Cp.

(ii) Show that if
· · · → Cp → Cp−1 → Cp−2 → . . .

is an exact sequence, and
∑
p dimCp <∞, then

∑
(−1)p dimCp = 0.

Exercise 9.2: A collection C of Z-modules is called a Serre class if for every short exact
sequence 0 → A → B → C → 0 such that two out of the three Z-modules A, B,
C are in C, the third is in C also. Fix a prime p ∈ Z. Identify which of the following
properties of Z-modules M define Serre classes: (a) M is torsion; (b) M is torsion-free;
(c) M is torsion but has no p-torsion; (d) every element of M has p-power order; (e);
every element of M is divisible by p; (f) every M is finitely generated. (*) What if we
replace M by an arbitrary commutative ring R (and p by a prime of R?).

Exercise 9.3: Prove or give a counterexample: given two path connected open sets U
and V whose union is X and whose intersection U ∩ V is path connected, there exists
a short exact sequence of abelian groups

0→ H1(U ∩ V )→ H1(U)⊕H1(V )→ H1(X)→ 0.

Exercise 9.4: If a : A∗ → B∗ is a chain map its mapping cone, denoted cone(a)∗, is
the complex

cone(a)n = An−1 ⊕Bn
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with differential dcone(a)(x, y) = −dAx+ a(x) + dBy (check that this squares to zero).
The point of this construction is to convert questions about chain maps to questions
about chain complexes.

(i) Show that the induced map on homology, a∗ = H(a) : H∗(A) → H∗(B), is an
isomorphism iff H(cone(a)∗) = 0.

(ii) Construct a short exact sequence

0→ B∗ → cone(a)∗ → A∗−1 → 0,

and identify the connecting map in the resulting long exact sequence.
(iii) Show that to give a map of complexes f = (h, b) : cone(a)∗ → C∗ is to give a

chain map b : B∗ → C∗ and a chain-homotopy h from b ◦ a to the zero map.
(iv) Show that if the map f from (iii) induces an isomorphism on homology then

there is a long exact sequence

· · · → Hn(A) a∗→ Hn(B) b∗→ Hn(C)→ Hn−1(A) a∗→ Hn−1(B) b∗→ Hn−1 → . . .

Exercise 9.5: (*) If a : A∗ → B∗ and b∗ : B∗ → C∗ are chain maps, what can we
say about cone(b ◦ a)? Show how to arrange the six groups H∗(A), H∗(B), H∗(C),
H∗(cone(a)), H∗(cone(b)) and H∗(cone(ba)) as the vertices of an octahedral diagram
of maps. Four of the faces should be commuting triangles, the other four exact triangles
(i.e., long exact sequences visualised as triangles). The last of these triangles is a long
exact sequence

· · · → Hp(cone(a))→ Hp(cone(ba))→ Hp−1(cone(b))→ . . . .

The hard part of the exercise is constructing this triangle and proving its exactness.
[Hint: define f : cone(a)→ cone(ba) by f(x, y) = (x, by). There is a natural inclusion
i : cone(b)→ cone(f). Show that i is a chain-homotopy equivalence.]

This exercise shows shows that the derived category of the abelian category of chain
complexes satisfies Verdier’s ‘octahedral axiom’ for triangulated categories.
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10. Homotopy invariance of singular homology

We prove that singular homology is an invariant of homotopy type. We thereby
we compute the homology of contractible spaces.

Proposition 10.1. Let ∗ denote a one-point space. Then Hi(∗) = 0 for all i > 0.

Proof. There is exactly one simplex σi in each dimension. Thus the singular com-
plex is

· · · → Zσ2 → Zσ1 → Zσ0 → 0.
Since σn ◦ δi = σn−1, the boundary operator is given by

∂nσn =
n∑
i=0

(−1)iσn−1 =
1
2

[1 + (−1)n]σn−1.

Thus the complex is

· · · → Zσ3
0→ Zσ2

1→ Zσ1
0→ Zσ0 → 0.

So ker ∂i = 0 when i is even and positive; and when i is odd, ∂i+1 is onto. Thus
Hi(∗) = 0 when i > 0. As expected, we find H0(∗) ∼= Z. �

Maps between spaces introduce homomorphisms between homology groups. Given
f : X → Y , define f# : Sn(X)→ Sn(Y ) by

f#(σ) = f ◦ σ.
It is clear that this is a chain map: ∂nf# = f#∂n. Thus there is an induced map

f∗ = Hn(f) : Hn(X)→ Hn(Y ).

Notice that if g : Y → Z is another map then (g ◦ f)# = g# ◦ f#, and hence
(g ◦ f)∗ = g∗ ◦ f∗.

Remark. In categorical language, we can express this by saying that Hn defines a
functor from the category Top of topological space and continuous maps to the
category Ab of abelian groups and homomorphisms. That is, Hn associates with
each space X an abelian group Hn(X); with each map f : X → Y a homomorphism
Hn(f) : Hn(X) → Hn(Y ); and the homomorphism Hn(g ◦ f) associated with a
composite is the composite Hn(g) ◦Hn(f). Moreover, identity maps go to identity
maps.

Theorem 10.2. Suppose that F is a homotopy from f0 : X → Y to f1 : X → Y .
The homotopy then gives rise to a chain homotopy PF : S∗(X) → S∗+1(Y ) from
(f0)# to (f1)#, that is, a sequence of maps PFn : Sn(X)→ Sn+1(Y ) such that

∂n+1 ◦ PFn + PFn−1 ◦ ∂n = (f1)# − (f0)#.

Hence Hn(f0) = Hn(f1).

Corollary 10.3. If f : X → Y is a homotopy equivalence then Hn(f) is an iso-
morphism for all n.

Corollary 10.4. A contractible space X has Hi(X) = 0 for all i > 0.

Remark. We can express the theorem in categorical language. Define a category
hTop whose objects are topological spaces, and whose morphisms are homotopy
classes of continuous maps. Then singular homology defines a sequence of functors
Hn : hTop→ Ab.
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To prove the theorem, we begin with low-dimensional cases, because there the
geometry is transparent.

Proof of the theorem when n is 0 or 1. First, given a 0-simplex ρ : ∆0 → X, note
that we have a 1-simplex PF0 (ρ) := F ◦ ρ : I = ∆1 → Y , and ∂1(PF0 (ρ)) = f1 ◦ ρ−
f0 ◦ ρ.

Next, consider some 1-simplex σ : ∆1 → X. We want to examine f1 ◦ σ− f0 ◦ σ.
Since ∆1 = I, our homotopy F defines a map on from the square ∆1 × I to Y ,

F ◦ (σ × idI) : ∆1 × I.
But the square is a union of two 2-simplices along a common diagonal. To notate
this, let the bottom edge be ∆1×{0} = [v0, v1], and the top edge ∆1×{1} = [w0, w1].
Thus the square is the convex hull [v0, v1, w0, w1] of its four vertices. It is the union
of the two triangles [v0, v1, w1] and [v0, w0, w1] along the common edge [v0, w1]. Note
that by expressing these triangles as convex hulls, we implicitly identify them with
the geometric 2-simplex ∆2: for the first of them, say, the point t0v0 + t1v1 + t2w1

corresponds to the (t0, t1, t2) ∈ ∆2.
Now define a 2-chain PF1 (σ) by applying F to each of these two simplices:

PF1 (σ) = F ◦ (σ × idI)|[v0,w0,w1] − F ◦ (σ × idI)|[v0,v1,w1]

We have
∂2P

F
1 (σ) = f1 ◦ σ − f0 ◦ σ + PF0 (∂1σ) :

the first terms come fom the top of the square, the second term from the bottom,
and the third from the two other sides. Thus, defining PF1 : S1(X) → S0(Y ) and
PF2 : S2(X)→ S1(Y ) by linearly extending the definitions from simplices to singular
chains, we have that

∂2P
F
2 + PF1 ∂1 = (f1)# − (f0)#.

�

Proof of the theorem in arbitrary dimensions. We proceed in the same way. For an
n-simplex σ : ∆n → X, we have a map

F ◦ (σ × idI) : ∆n × I → Y

defined on the ‘prism’ ∆n×I, and we want to express this as a sum of n+1-simplices.
To do this, we think of the prism as the convex hull [v0, . . . , vn, w0, . . . , wn], where
vi is the ith vertex of ∆ × {0} = ∆, and wi the ith vertex of ∆ × {1} = ∆. Then
one can check (as Hatcher does) that

∆× I =
n⋃
i=0

[v0, . . . , vi, wi, wi+1, . . . , wn],

that each [v0, . . . , vi, wi, wi+1, . . . , wn] is an n+ 1-simplex, and that these simplices
intersect along common faces. This gives ∆× I the structure of a ∆-complex.

We now define

PFn (σ) =
n∑
i=0

(−1)iF ◦ (σ × idI)|[v0,...,vi,wi,wi+1,...,wn],

extending by linearity to get a map PFn : Sn(X) → Sn+1(Y ). The boundary of
Pn(σ) should then consist (geometrically and hence algebraically) of f1 ◦ σ, f0 ◦ σ
and Pn−1(∂σ). Since we did not actually verify that we had a ∆-complex, let us
instead verify algebraically that PF defines a chain homotopy.
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We have

∂n+1P
F
n (σ) =

∑
j≤i

(−1)i+jF ◦ (σ × idI)|[v0,...v̂j ...,vi,wi,...,wn]

+
∑
l>k

(−1)k+lF ◦ (σ × idI)|[v0,...,vk,wk,...ŵl−1...,wn].

The term with j = i = 0 in the first sum is

F ◦ (σ × idI)|[w0,...,wn] = f1 ◦ σ.
The term with l = k + 1 = n in the second sum is

−F ◦ (σ × idI)|[v0,...,vn] = −f0 ◦ σ.
Next we look for the cancelling pairs of faces which we expect geometrically. These
appear as the equality of [v0, . . . , v̂i, wi, . . . , wn] = [v0, . . . , vi−1, ŵi−1, . . . , wn]. Apart
from the exceptional cases i = j = 0 and l = k + 1 = n, the j = i term in the first
sum cancels with the l = k+ 1 term in the second sum where k = i− 1. So, at this
point we have

∂n+1P
F
n (σ) = f1 ◦ σ − f0 ◦ σ

+
∑
j<i

(−1)i+jF ◦ (σ × idI)|[v0,...v̂j ...,vi,wi,...,wn]

+
∑
l>k

(−1)k+l+1F ◦ (σ × idI)|[v0,...,vk,wk,...ŵl...,wn].

We want the two sums here to total −PFn (∂nσ). But if j < i, then

PFn (σ ◦ δi) =
∑
j

(−1)j+i−1(σ × idI)|[v0,...v̂j ...vi,wi,...,wn].

If j ≥ i then instead

PFn (σ ◦ δi) =
∑
j

(−1)j+i(σ × idI)|[v0,......,vi,wi,...ŵj−1...,wn].

So the desired equality does indeed hold. �

Exercise 10.1: Suppose that X is a subspace of Rn such that there is a map r : Rn → X
with r|X = idX . Show that X has the homology of a point.

Exercise 10.2: Compute the first homology group H1 of the n-torus Tn = (S1)n. Use
this to construct a surjective homomorphism G → GLn(Z), where G is the group of
homotopy equivalences Tn → Tn. Show that when n = 1 its kernel consists of maps
homotopic to the identity.

Exercise 10.3: (*) The model Dehn twist on the annulus A = [−1, 1] × (R/Z) is the
homeomorphism t : A→ A of form (s, t) 7→ (s, t+ (s+ 1)/2). A Dehn twist along an
embedded circle C in a surface S is a homeomorphism S → S obtained by identifying
a neighbourhood of C with A, and ‘transplanting’ a model Dehn twist into S. (I am
being careless about right/left-handed twists.)

Let Σ be a genus 2 surface, and C ⊂ Σ a circle dividing it into two 1-holed tori.
Show that if f is a Dehn twist along C then f∗ acts on H1(Σ) as the identity, but f
is not homotopic to the identity map.
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11. The locality property of singular chains

There is a ‘locality’ theorem for singular chains, reminiscent of the proof of van
Kampen’s theorem on π1. This may be regarded as the technical core of singular
homology theory. We do not give a complete proof, but we reduce it to a lemma
concerning the geometric p-simplex ∆p.

Definition 11.1. An excisive triad is a triple (X;A,B) with X a space and A, B
subspaces of X such that X = int(A) ∪ int(B).

Theorem 11.2 (locality for singular chains). Suppose (X;A,B) is an excisive
triad. Let Sn(A + B) denote the subgroup of Sn(X) generated by the images of
Σn(A) and Σn(B). Notice that it is a subcomplex. Then the inclusion map

i : S∗(A+B)→ S∗(X)

is a quasi-isomorphism.

(Hatcher proves that i is a chain-homotopy equivalence, but this is more than
we need.)

Setting up the proof. Form the quotient complex Q∗ = S∗(X)/ im(i). Then we
have a short exact sequence

0→ S∗(A+B) i→ S∗(X)→ Q∗ → 0

and hence a long exact sequence of homology groups

· · · → Hp+1(Q∗)→ Hp(S∗(A+B)) i∗→ Hp(X)→ Hp(Q∗)→ . . .

The theorem asserts that i∗ is an isomorphism. From the long exact sequence, we
see that this is equivalent to the assertion that Q∗ is acyclic, i.e., that

Hp(Q∗) = 0 for all p ∈ Z.

Thus we have to show that if q is a singular p-chain representing a cycle in q, so

∂q = r + s

with r ∈ Sp−1(A) and s ∈ Sp−1(B), then there are p-chains a ∈ Sp(A) and b ∈
Sp(B), and a (p+ 1)-chain c ∈ Sp+1(X), such that

q = a+ b+ ∂c.

Clearly it suffices to do this when q is a simplex. So, in words: we must show that
any σ : ∆p → X is homologous to the sum of a p-chain in A and a p-chain in B.

�

We could hope to find such a homology by breaking up the simplex σ as a
union of sub-simplices making ∆p into a ∆-complex. If the p-simplices in this
decomposition are sufficiently small then they will map either to A or to B under
σ. When σ is a 1-simplex, i.e., a path I → X, it is clear how we could do this: we
write I = [0, 1/2] ∪ [1/2, 1]. Then σ is homologous to σ|[0,1/2] + σ|[1/2,1]. Iterating
this subdivision k times, we break up the unit interval into sub-intervals of length
2−k; when k � 0, each sub-interval will map into int(A) or int(B).

The proof in higher dimensions uses a generalization of this subdivision of ∆1.
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Lemma 11.3 (Subdivision lemma). The geometric p-simplex ∆p can be decom-
posed as a p-dimensional ∆-complex in such a way that all the p-simplices τ1, . . . , τN
in this decomposition have diameter < 1, and such that in the singular chain com-
plex S∗(∆p), one has

id∆p −
∑
i

τi ∈ im ∂p+1.

Here we regard id∆p as a p-simplex in ∆p. (In fact, one can take N = p! and the
diameters to be ≤ p

p+1 .)

The particular subdivision we have in mind here is called barycentric subdivision.
For the proof of the lemma we refer to Hatcher (it can be extracted from Steps 1 and
2 of the proof of the Excision Theorem). We will at least say what the barycentric
subdivision is. The barycenter b of a p-simplex [v0, . . . , vp] is the point

b =
1

p+ 1
(v0 + · · ·+ vp).

We now define the barycentric subdivision by induction on p. When p = 0, the
subdivision of ∆0 = [v0] has just one simplex: [v0] itself. When p > 0, the p-
simplices of the barycentric subdivision of [v0, . . . , vp] are of form [b, w0, . . . , wp−1],
where [w0, . . . , wp−1] is a (p−1)-simplex in the barycentric subdivision of some face
[v0, . . . , v̂i, . . . , vp] of [v0, . . . , vp].

The subdivision lemma is a little fiddly to prove. Since we are omitting the proof,
let us emphasize that this is an entirely combinatorial lemma concerning convex
geometry in Euclidean spaces; the target space X does not appear at all.

Proof of locality, granting the subdivision lemma. Write β =
∑
i τi ∈ Sp(∆p). Now,

each τi is a map ∆p → ∆p (actually an embedding), so we can iterate the subdi-
vision process, considering the composed maps τj ◦ τi : ∆p → ∆p. Let’s write
β2 =

∑
i,j τj ◦ τi, and more generally

βn =
∑

i1,...,in

τin ◦ · · · ◦ τi1 .

By induction on n, we have that id∆p − βn ∈ im ∂p+1.
Let 1 − ε be the maximum diameter of one of the τi. Any x ∈ ∆p has an open

neighbourhood Nx such that σ(N) is contained in int(A) or in int(B), since these
are open sets that cover X. But the image of τin ◦ · · · ◦ τi1 has diameter ≤ (1− ε)n,
so for large enough n, Nx is contained is the image of such a simplex. Thus ∆p

is covered by subdivided simplices τin ◦ · · · ◦ τi1 which map either to int(A) or to
int(B). A priori, the number n depends on x, but because ∆p is compact we can
use the same n = n0 for all these subdivided simplices.

We know that id∆p − βn0 ∈ Bp(∆p) (recall that Bp denotes im ∂p+1), and ap-
plying σ we find that

σ − σ# ◦ βn0 ∈ Bp(X).
But σ# ◦ βn0 is the sum of simplices σ ◦ τin0

◦ · · · ◦ τi1 that map either to int(A) or
to int(B). This proves the theorem. �
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12. Mayer–Vietoris and the homology of spheres

The locality theorem from the previous lecture has an important consequence:
the exact Mayer–Vietoris sequence. Using this sequence, we can at last carry out
interesting calculations in singular homology. We show that the homotopy type of
Sn, and hence the homeomorphism type of Rn, detects the dimension n.

12.1. The Mayer–Vietoris sequence. We extract from the locality theorem an
extremely useful computational tool in singular homology.

Theorem 12.1. Suppose (X;A,B) is an excisive triad. Let a : A→ X, b : B → X,
α : A∩B → A and β : A∩B → B be the inclusion maps. Then there is a canonical
long exact sequence

· · · → Hp(A ∩B)
α∗−β∗−→ Hp(A)⊕Hp(B)

(a∗,b∗)−→ Hp(X) δ→ Hp−1(A ∩B)→ . . . .

Remark. Since H−1(A ∩B) = 0, the sequence ends with · · · → H0(A)⊕H0(B)→
H0(X)→ 0.

Proof. There’s a short exact sequence of chain complexes

0→ S∗(A ∩B)
α−β→ S∗(A)⊕ S∗(B) a+b→ S∗(A+B)→ 0,

simply because S∗(A ∩B) = S∗(A) ∩ S∗(B). This results in a long exact sequence
of homology groups. But Hn(S∗(A + B)) = Hn(X) by the locality theorem, and
hence the long exact sequence has the form claimed. �

Exercise 12.1: Show that the connecting map δ can be understood as follows. Take
a p-cycle z ∈ Sp(X). By locality, there is a homologous p-cycle z′ = x + y with x a
chain in A and y a chain in B. Then ∂x = −∂y, hence ∂x is a cycle in A ∩ B. We
have δ[z] = [∂x].
Exercise 12.2: Show that the Mayer–Vietoris sequence is not merely canonical, but also
natural in the following sense. Given an another excisive triad (X ′;A′, B′) and a map
f : X → X ′ such that f(A) ⊂ A′ and f(B) ⊂ B′, the two long exact sequences and
the maps between them induced by f form a commutative diagram.

Example 12.2. As a first example of the Mayer–Vietoris sequence, let us prove
that

H∗(S1) = Z⊕ Z
where the first Z is in degree 0, the second Z in degree 1. We have S1 = A ∪ B
where A = S1 \ {(1, 0)} and B = S1 \ {(−1, 0)}. Then A∩B ' S0. Since A and B
are contractible, and A ∩B the disjoint union of two contractible components, the
exactness of the Mayer–Vietoris sequence

Hp(A)⊕Hp(B)→ Hp(S1)→ Hp−1(A ∩B),

tells us that Hp(S1) = 0 for all p > 1. We already know H1(S1) = Z = H0(S1) (via
π1 and path-connectedness), but let’s see that we can recover this by the present
method. The sequence ends with the 6-term sequence

0→ H1(S1)→ Z2 → Z2 → H0(S1)→ 0,

where the map Z2 = H0(A ∩ B) → H0(A) ⊕ H0(B) = Z2 is given by (m,n) 7→
(m − n,m − n). Thus H1(S1) is isomorphic to the kernel of this map, which is
Z(1, 1), and H0(S1) to its cokernel, which is also Z.



40 TIM PERUTZ

Proposition 12.3. We have

H∗(Sn) ∼= Z⊕ Z, n ≥ 0,

where the first Z is in degree 0, the second Z in degree n.

Proof. By induction on n. Since S0 is a 2-point space, it’s true for that case. We’ve
just proved it for n = 1, so we’ll start the induction there.

So now assume n > 1. We have Sn = A ∪ B where A = Sn \ {N} and B =
Sn \ {S}, N and S being the north and south poles. Then A∩B ' Sn−1. Since A
and B are contractible, Mayer–Vietoris tells us that Hp(A)⊕Hp(B) = 0 for p > 0.
Thus, from the exactness of

Hp(A)⊕Hp(B)→ Hp(Sn)→ Hp−1(A ∩B)→ Hp−1(A)⊕Hp−1(B),

we see that Hp(Sn) ∼= Hp−1(Sn−1) for all p > 1. We also have an exact sequence

0→ H1(S1)→ Z→ Z2,

where the map Z = H0(A ∩ B) → H0(A)⊕H0(B) = Z2 is n 7→ (n,−n), and so is
injective. Hence H1(Sn) = 0 (which we knew anyway, Sn being simply connected.)

�

Remark. The argument can be made slicker using reduced homology.

Note that, in all dimensions (even n = 1) the connecting map δn : Hn(Sn) →
Hn−1(Sn) is an isomorphism.
Exercise 12.3: Describe an n-cycle cn ∈ Sn(Sn) that generates Hn(Sn). (Prove that
your cycle generates by induction, looking at the explicit form of the connecting map.)

We now take a break from the formal development of the theory and harvest
some applications.

Theorem 12.4. If Rn is homeomorphic to Rm then m = n.

Proof. We may assume that m and n are positive. If Rm ∼= Rn then Rm \ {0} ∼=
Rn \ {pt.} ∼= Rn \ {0}, hence Sn−1 is homotopy equivalent to Sm−1. But Sn−1 and
Sm−1 have different homology in degree n− 1, unless m = n. �

Theorem 12.5 (Brouwer fixed point theorem). Let Dn denote the closed n-ball in
Rn, n ≥ 1. Then every continuous map Dn → Dn fixes a point.

Proof. Recall that we already proved this using π1, when n = 2. By the same
argument that we gave there, it suffices to show there is no retraction r : Dn →
∂Dn = Sn−1, i.e. no r such that r ◦ i = idSn−1 , where i : Sn−1 → Dn denotes the
inclusion map. If such an r existed, we would have

idHn−1(X) = Hn−1(r) ◦Hn−1(i).

But Hn−1(Sn−1) 6= 0, whereas Hn−1(Dn) (the target of Hn−1(i)) is zero, assuming
n > 1. This proves the theorem (except when n = 1; but in that case it follows
from the intermediate value theorem). �
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12.2. Degree. Define the degree deg(f) of a map f : Sn → Sn by the equation

Hn(f)(m) = deg(f)m, m ∈ Hn(Sn) ∼= Z.
The following properties of degree follow from the definition and the basic properties
of homology:

(1) Homotopic maps have the same degree.
(2) deg(idSn) = 1.
(3) deg f = 0 when f extends to a map Dn+1 → Sn.
(4) deg(fg) = deg(f) deg(g).

You will find solutions to the following exercise in Hatcher, but I recommend trying
to work it out for yourself.
Exercise 12.4: Degree has the following further properties:

(i) When n = 1, the homological degree defined here coincides with the degree as
we defined it earlier via π1(S1).

(ii) deg s = −1 when s is the restriction to Sn of a reflection in Rn+1.
(iii) deg a = (−1)n+1 when a is the antipodal map x 7→ −x.
(iv) deg f = (−1)n+1 when f has no fixed points.

Use the last point to show (a) that no group of order > 2 can act freely on S2m, and
(b) that S2m possesses no nowhere-vanishing vector field.

Exercise 12.5: Complex projective n-space CPn is defined as (Cn+1 \ {0})/C∗, where
C∗ acts by scalar multiplication. Use Mayer–Vietoris to show that

Hp(CPn) ∼=

{
Z, if p is even and 0 ≤ p ≤ 2n,
0, else.

Show, moreover, that the inclusion of CPn in CPn+1, induced by the inclusion of Cn+1

as a linear subspace of Cn+2, induces an isomorphism on homology up to degree 2n.

Exercise 12.6: Use Mayer–Vietoris to compute H∗(T 2), H∗(RP 2) and H∗(K2). In
each case, find an explicit (minimal) collection of cycles that span the homology.

Exercise 12.7: Use Mayer–Vietoris to compute H∗(Σg) where Σg is a 2-sphere with g
handles attached.
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13. Relative homology and excision

13.1. Relative homology. Suppose i : A → X is the inclusion of a subspace.
There is a short exact sequence of chain complexes

0→ S∗(A)
i#→ S∗(X)→ S∗(X,A)→ 0,

where S∗(X,A) = S∗(X)/i#S∗(A). We denote by H∗(X,A) the homology of
S∗(X,A). Thus a chain in X defines a cycle in S∗(X,A) if its boundary is a
sum of simplices in A. A map of pairs f : (X,A)→ (Y,B) induces f∗ : H∗(X,A)→
H∗(Y,B).

The short exact sequence for the pair (X,A) induces the long exact sequence of
the pair

· · · → Hp(A) i∗→ Hp(X)→ Hp(X,A) δ→ Hp−1(A)→ . . . .

We can understand the connecting map δ as follows. If c ∈ Sp(X,A) is a cycle, δ[c]
is defined by lifting c to a chain c̃ in Sp(X), and putting δ[c] = [i∗(∂pc)]. In other
words, δ[c] is the boundary of a chain representing c, considered as a cycle in A.
Exercise 13.1: Show that if B ⊂ A ⊂ X, one has a long exact sequence of the triple

· · · → Hi(A,B)→ Hi(X,B)→ Hi(X,A)→ Hi−1(A,B)→ . . . ,

and describe the maps in this sequence.

We now state the excision theorem. It has essentially the same content as the
Mayer–Vietoris sequence.

Theorem 13.1 (Excision). Suppose (X;A,B) is an excisive triad. Then the map

H∗(A,A ∩B)→ H∗(X,B)

induced by the inclusion (A,A ∩B)→ (X,B) is an isomorphism.

Proof. We invoke the locality theorem for chains. Note that H∗(A,A ∩ B) is the
homology of the complex S∗(A)/S∗(A ∩ B) = S∗(A)/(S∗(A) ∩ S∗(B)) (where we
think of S∗(A) and S∗(B) as subcomplexes of S∗(X)). By a general property of
abelian groups, the inclusion of S∗(A) in S∗(A) + S∗(B) induces an isomorphism

S∗(A)/(S∗(A) ∩ S∗(B)) ∼= (S∗(A) + S∗(B))/S∗(B).

But S∗(A)+S∗(B) = S∗(A+B) by definition of the latter, and the map S∗(A+B)→
S∗(X) is a quasi-isomorphism. Let In = Hn(S∗(A + B)/S∗(B)). Then we have a
commutative diagram with exact rows

Hn(B) −−−−→ Hn(S∗(A+B)) −−−−→ In −−−−→ Hn−1(B) −−−−→ Hn−1(S∗(A+B))

=

y ∼=
y y =

y ∼=
y

Hn(B) −−−−→ Hn(X) −−−−→ Hn(X,B) −−−−→ Hn−1(B) −−−−→ Hn−1(X)

All the vertical arrows but the middle one are isomorphisms, and hence so is
the middle one (this is the 5-lemma). Putting things together, we find that
S∗(A)/S∗(A ∩ B) → S∗(X)/S∗(B) is a quasi-isomorphism, which is the result we
want. �

Exercise 13.2: Re-derive H∗(Sn) ∼= Z(0) ⊕ Z(n) using excision.
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Example 13.2. When working with spaces X equipped with basepoints x, it’s
often useful to work with reduced homology H̃∗. We put

H̃n(X) = Hn(X, {x}).
Then, by the exact sequence of the pair, the natural map

Hn(X)→ H̃n(X)

is an isomorphism for all n > 0. The end of the sequence looks like this:

H1(X, {x})→ H0({x})→ H0(X)→ H0(X, {x})→ 0.

The map H0({x})→ H0(X) is injective (which explains why H̃1(X) = H1(X)), so
H̃0(X) = H0(X)/H0({x}). Thus, when X is path connected, we have

H̃n(X) =

{
0, n = 0
Hn(X), n > 0.

This justifies the omission of x from the notation (when X is not path connected,
x is important).

Exercise 13.3: Let A be a non-empty closed subspace of X. There is a natural homo-
morphism H∗(X,A)→ H∗(X/A,A/A) = H̃∗(X/A). Use excision to show that, when
A has a neighbourhood N that deformation-retracts to A, this map is an isomorphism.

Exercise 13.4: Show that if (X;A,B) is an excisive triad, and b ∈ A ∩B a basepoint,
there is an exact Mayer–Vietoris sequence in reduced homology (formally the same as

the usual one, but with H̃∗ instead of H∗).

13.2. Suspension. We now set up the suspension isomorphisms. The (unreduced)
suspension SX of X is the space (X× [−1, 1])/ ∼ where (x, t) ∼ (x′, t′) if t = t′ = 1
or t = t′ = −1. For example, S(Sn) ∼= Sn+1.

Proposition 13.3. Fix a basepoint x ∈ X. There are natural isomorphisms

sn : H̃n+1(SX)→ H̃n(X), n ≥ 0.

Proof. We have SX = C+ ∪ C−, where

C+ = (X × [−1
2
, 1])/(X × {1}), C− = (X × [−1,

1
2

])/(X × {−1}).

Both C+ and C− are cones on X; they deformation retract to their respective cone
points c± = (X × {±1})/(X × {±1}). Thus

Hn(SX,C+) = Hn(SX, {c+}) = H̃n(SX).

On the other hand (X;C+, C−) is an excisive triad, so

Hn(SX,C+) ∼= Hn(C−, C+ ∩ C−).

Since C− is contractible, the long exact sequence of the pair tells us that

Hn(C−, C+ ∩ C−)→ Hn−1(C+ ∩ C−) = Hn−1(X)

is an isomorphism when n > 1, and that H1(C−, C+ ∩C−) = H̃0(X). Putting this
together, we get isomorphisms

H̃n(SX) ∼= Hn(SX,C+) ∼= Hn(C−, C+ ∩ C−) ∼= H̃n−1(X).

�
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Exercise 13.5: Show that the two spaces S2 ∨ S4 and CP 2 have isomorphic homology
groups. Likewise the two spaces S3 ∨ S5 and S(CP 2).

Remark. We will see later that the homotopy types of S2∨S4 and CP 2 can be dis-
tinguished by their cohomology rings, but that S3∨S5 and S(CP 2) have isomorphic
cohomology rings.

13.3. Summary of the properties of relative homology.
• To each pair of spaces (X,A), and each integer n, it assigns an abelian

group Hn(X,A) (and we write Hn(X) for Hn(X, ∅)).
• To each map f : (X,A) → (X ′, A′) and each n ∈ Z it assigns a homomor-

phism Hn(f) : Hn(X,A)→ Hn(X ′, A′). One has Hn(f ◦g) = Hn(f)◦Hn(g)
and Hn(id(X,A)) = idHn(X,A). If f0 is homotopic to f1 via a homotopy {ft}
such that ft|A = f0|A, then Hn(f1) = Hn(f0).
• To each pair of spaces (X,A), and each integer n, it assigns a homomor-

phism
δn : Hn(X,A)→ Hn−1(A).

These maps are natural transformations. That is, given f : (X,A) →
(X ′, A′), one has

δn ◦Hn(f) = Hn−1(f) ◦ δn
as homomorphisms Hn(X,A)→ Hn−1(A′).

Besides these basic properties, the following also hold:
• DIMENSION: If ∗ denotes a 1-point space then Hn(∗) = 0 for n 6= 0, while
H0(∗) = Z.
• EXACTNESS: The sequence

· · · → Hn(A)→ Hn(X)→ Hn(X,A) δn→ Hn−1(A)→ Hn−1(A)→ . . .

is exact, where the unlabelled maps are induced by the inclusions (A, ∅)→
(X, ∅) and (X, ∅)→ (X,A).
• EXCISION: if (X;A,B) is an excisive triad then the map

Hn(A,A ∩B)→ Hn(X,B)

induced by the inclusion (A,A ∩B)→ (X,B) is an isomorphism.
• ADDITIVITY: If (Xα, Aα) is a family of pairs, then one has an isomorphism⊕

α

Hn(Xα, Aα)→ Hn(
∐
α

Xα,
∐
α

Aα)

given by the sum of the maps induced by the inclusions into the disjoint
union.

(Additivity is easy to check; for finite families, it follows from excision and exact-
ness.)

Remark. As stated, these axioms do not uniquely characterise relative homology.
However, they do characterise it if one restricts the pairs (X,A) to be CW pairs.
Alternatively, if we include one more axiom, that ‘weak equivalences’ induce isomor-
phisms on homology, then the axioms uniquely characterise the theory for arbitrary
pairs, because every pair is weakly equivalent to a CW pair. If one omits the di-
mension axiom, there are many different homology theories on CW pairs, including
stable homotopy, real or complex K-theory, and oriented, unoriented or complex
bordism.
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14. Vanishing theorems for homology of manifolds

Theorem 14.1. Let M be an n-manifold, i.e., a space locally homeomorphic to
Rn. Then Hp(M) = 0 for p > n.

The proof will use Mayer–Vietoris sequences to increase the generality incre-
mentally, starting from a very banal statement. So as to avoid low-dimensional
exceptions, we use Mayer–Vietoris for reduced homology. However, we can and
shall assume throughout that n > 0.

Proof. Step 1: If n ≥ 1 and X is the union of strictly less than 2n of the faces of
the n-cube In, then H̃p(X) = 0 for p ≥ n− 1.

This we prove by induction on n; the n = 1 case is clear. The induction step
is done by a further induction, on the number of faces of X. When X is empty
it it trivial. Otherwise, choose a face F of In which is contained in X, and let
X ′ = X \ int(F ). Choose F so that not all its neighbours are in X. Mayer–Vietoris
(and a few deformation retractions of open neighbourhoods) then gives an exact
seqence

H̃p(F )⊕ H̃p(X ′)→ H̃p(X)→ H̃p−1(F ∩X ′).
But F ∩X ′ is a union of strictly less than 2(n− 1) of the faces of the (n− 1)-cube
F , so inductively H̃p−1(F ∩X ′) = 0. Trivially H̃p(F ) = 0, and by induction on the
number of faces, H̃p(X ′) = 0. This completes the induction.

Step 2: If C1, . . . , Cq are integer cubes in Rn then Hp(
⋃
i Ci) = 0 for p ≥ n.

Here an integer cube C in Rn means a translate by some (m1, . . . ,mn) ∈ Zn
of In. We prove this by induction on the number of cubes q. A single cube is
contractible. For the induction step, observe that one of the cubes, which we may
take to be Cq, has maximal x1-coordinate. It then intersects less than 2n of its
neighbours. Write Dq = C1 ∪ · · · ∪ Cq. We then have a Mayer–Vietoris sequence

Hp(Cq)⊕Hp(Dq−1)→ Hp(Dq)→ H̃p−1(Dq−1 ∩ Cq).

By induction, the left-hand term is zero for p ≥ n, so it suffices to show that
Hp−1(Dq−1 ∩ Cq) = 0 also. But this follows from Step 1.

Step 3: Let U ⊂ Rn be an open set. Then Hp(U) = 0 for p ≥ n.
Let z =

∑
aiσi be a p-cycle, and let K denote the union

⋃
imσi. Note that K

is compact. Thus we can find ε > 0 and a finite collection of integer cubes Cj such
that the interiors of the small cubes εCj cover K, but the union L of the εCj is
contained in U . Then z represents a p-cycle in L. But Hp(L) = 0 by Step 2; so z
is a boundary in L, and hence in U .

Step 4: For an n-manifold M , we have Hp(M) = 0 when p > n.
Let z =

∑
aiσi be a p-cycle in M , and let K =

⋃
imσi. Again it is compact,

and hence covered by finitely many open sets homeomorphic to Rn. We prove by
induction on N that a p-cycle z contained in N open sets V1, . . . , VN homeomorphic
to Rn is a boundary in

⋃
Vi (hence in M). The case N = 1 was Step 3. For the

induction step, assume N > 1 and let U = V1 ∪ · · · ∪ VN−1. Mayer–Vietoris gives
an exact sequence

Hp(U)⊕Hp(VN )→ Hp(U ∪ VN )→ Hp−1(U ∩ VN ).

By induction, the left term vanishes. The term on the right vanishes by Step 3.
Hence the middle term also vanishes. �
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14.1. Local homology. The local homology of a space M at x ∈ M is defined as
H∗(M,M \ {x}).

Lemma 14.2. When M is an n-manifold, one has H∗(M,M \ {x}) ∼= Z(n).

Proof. Choose a neighbourhood D of x homeomorphic to a closed n-ball. By exci-
sion, H∗(M,M \{x}) ∼= H∗(D,D \{x}). One finds from the long exact sequence of
the pair that Hp(D,D \ {x}) ∼= H̃p−1(D−{x}) for all p. But D \ {x} deformation-
retracts to Sn−1, and H∗(Sn−1) ∼= Z(p−1), whence the result. �

We can form a natural covering space p : HM → M whose fiber over x is
Hn(M,M \ {x}). Thus a point in HM is a pair (x, hx) where x ∈ M and hx ∈
Hn(M,M \ {x}), and p(x, hx) = x. The topology is defined as follows. Let U be
an open set in X homeomorphic to Rn, and let B ⊂ U be a closed neighbourhood
homeomorphic to the closed disc Dn. Then one has isomorphisms

Hn(M,M \ {y})← Hn(M,M \B)→ Hn(M,M \ {x}).

Define a ‘component’ of p−1(U) to be an equivalence class of pairs (x, hx) ∈ p−1(U),
where (x, hx) is equivalent to (y, hy) if there is a ball B containing both x and y and
an element z ∈ Hn(M,M \ B) mapped by the above isomorphisms to hx and hy.
The components of p−1(U), as U varies over open neighbourhoods homeomorphic
to Rn, form a basis for a topology making p a covering map.

14.2. Homology in dimension n.

Theorem 14.3. Hn(M) = 0 when M is a connected but non-compact n-manifold.

We have already established a special case of this, the case where M is an open
set in Rn. The principle of the proof is standard, but the details here are from
May’s book. The proof is more technical than one would ideally like, but there is
only really new idea:

An n-dimensional homology class z determines a section sz of p : HM →M , and
z = 0 if sz(x) = 0 for some x.

Lemma 14.4. Let U ⊂ Rn be open. Then the natural homomorphism

Hn(Rn, U)→
∏

x∈Rn\U

Hn(Rn,Rn \ {x})

is injective. Equivalently, the product of maps induced by inclusions,

H̃n−1(U)→
∏

x∈Rn\U

H̃n−1(Rn \ {x}),

is injective.

The equivalence of the two assertions follows from the long exact sequences of
the pairs (Rn, U) and (Rn,Rn \{x}). Informally, the second assertion says that any
non-trivial (n − 1)-cycle in U must wrap around some point outside U . We prove
the second assertion.

Proof. Suppose s ∈ H̃n−1(U) maps to zero in H̃n(Rn \ {x}) for all x /∈ U . We will
show that s = 0. The notation will be rather heavy: we fix a chain of subspaces

K ⊂ V ⊂ V̄ ⊂ U
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where K is compact, V open, V̄ compact, and s is the image of some r ∈ H̃n−1(K).
Let T be a cube (−d, d)n large enough that V̄ ⊂ T . We discard everything outside
T : we shall show that r maps to zero in H̃n−1(T ∩U), hence also in H̃n−1(U). We
know that r maps to zero in H̃n−1(T \ {x}) for all x ∈ T \ U . Our method will be
to ‘eat away’ more and more of T \U , showing that r maps to zero in H̃n−1(T \S)
for progressively larger subsets E ⊂ T \ U , starting at E = {x} and ending at
E = T \ U itself. Since T \ (T \ U) = T ∩ U , this will do the job.

Now, T \U is covered by a grid of small compact cubes in Rn, whose diameter is
chosen small enough that none of them hits V . Let C1, . . . , Cq be the intersections
of these small cubes with T . We claim that r maps to zero in H̃n−1(T \Ep) for p ≤ q,
where Ep = C1 ∪ · · · ∪ Cp. Indeed, the case p = 0 is trivial, and for p > 0 we have
T \Ep = (T \Ep−1)∩(Rn\Ep). On the other hand, (T \Ep−1)∪(Rn\Ep) = Rn\Ep.
Mayer–Vietoris gives

Hn(Rn \ Ep) = 0→ H̃n−1(T \ Ep)→ H̃n−1(T \ Ep−1)⊕ H̃n−1(Rn \ Ep).
Here the group on the left is zero by Step 3 in the proof of the earlier theorem.
Since r maps to zero in H̃n−1(T \Ep−1)⊕ H̃n−1(Rn \Ep), it must then map to zero
in H̃n−1(T \ Ep). �

Proof of the theorem. Any z ∈ Hn(M) defines a continuous section sz : M → HM .
If M is connected (hence path-connected), it follows from unique path-lifting that
any continuous section is determined by its value at a point. But z is represented by
a cycle that maps to a compact subset Z ⊂M . If M is connected but non-compact,
we can choosing x ∈M \ Z. Then sz(x) = 0, and hence sz = 0.

Thus we take a class z ∈ Hn(M) that maps to zero in some Hn(M,M \ {x}).
We must show that z = 0.

There is some compact set Z ⊂ M such that z is in the image of Hn(Z). Now,
Z is contained in a finite union U1 ∪ · · · ∪ Uq of coordinate neighbourhoods Ui,
and it suffices to show [z] = 0 in Hn(U1 ∪ · · · ∪ Uq). We have already proved that
Hn(U1) = 0. Now take q > 1, and inductively suppose that we’ve shown that
Hn(U1 ∪ · · · ∪ Uq−1) = 0. Mayer–Vietoris gives an exact sequence

Hn(U)⊕Hn(V )→ Hn(U1 ∪ · · · ∪ Uq)→ H̃n−1(U ∩ V )→ H̃n−1(U)⊕ H̃n−1(V ),

where V = U1 ∪ · · · ∪ Uq−1 and U = Uq. This reduces to

0→ Hn(U1 ∪ · · · ∪ Uq)→ H̃n−1(U ∩ V )→ H̃n−1(V ),

and so the task is to show that the map j∗ : H̃n−1(U ∩ V )→ H̃n−1(V ) induced by
inclusion is injective. This step is a little tricky. Take r ∈ ker j∗. From the long
exact sequence of the pair (V,U ∩ V ),

0→ Hn(V,U ∩ V )→ H̃n−1(U ∩ V )→ H̃n−1(V ),

we find a (unique) t ∈ Hn(V,U ∩V ) such that δt = r. From the long exact sequence
of the pair (U,U ∩ V ),

0→ Hn(U,U ∩ V )→ H̃n−1(U ∩ V )→ 0,

we find a (unique) s ∈ Hn(U,U ∩ V ) with δs = r. Now, s and t have images
s′ and t′ in a common group Hn(U ∪ V,U ∩ V ), and s′ − t′ lies in the kernel of
δ : Hn(U∪V,U∩V )→ H̃n−1(V ), hence in the image of Hn(U∪V ): say s′−t′ comes
from w ∈ Hn(U ∪ V ). Since U ∪ V is non-compact, the composite Hn(U ∪ V ) →
Hn(M) → Hn(M,M \ {x}) maps w to zero (by the argument at the beginning of
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this proof). Take x outside U ∪ V . Then we have a map Hn(U ∪ V,U ∩ V ) →
Hn(M,M \ {x}) factoring Hn(U ∪ V ) → Hn(M,M \ {x}) which therefore carries
t′−s′ to zero. Moreover, t′ maps to zero in Hn(M,M \{x}), because it comes from
t ∈ Hn(V,U ∪ V ), and the map Hn(V,U ∪ V )→ Hn(M,M \ {x}) factors through
Hn(M \ {x},M \ {x}) = 0. Hence s′ maps to zero in Hn(M,M \ {x}). It follows
that s maps to zero in Hn(U,U \ {c}) ∼= Hn(M,M \ {c}).

Since U ∼= Rn, we have s ∈ Hn(Rn,Rn\V ) and smaps to zero inHn(Rn,Rn\{y})
for every y lying outside V . We wish to show that s is zero (so that r = δs = 0).
But that is what we proved in the last lemma. �

Exercise 14.1: (a) Let X be a path connected space. Show how 2-sheeted covering
spaces of X, up to isomorphism, correspond to homomorphisms π1(X,x)→ Z/2.

(b) Let M̃ ⊂ HM be the subspace consisting of pairs (x, hx) with hx a generator

for Hn(M,M \ {x}) ∼= Z. Thus p : M̃ → M is a 2-sheeted covering space. The
corresponding homomorphism π1(M)→ Z/2 is called the orientation character or first
Stiefel–Whitney class w1(M) of M . Compute it for X the Klein bottle and for RP 2.
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15. Orientations and fundamental classes

15.1. Homology with coefficients. Homology with coefficients is a simple gen-
eralisation of singular homology.

Let R be a commutative unital ring. The case we have been considering up to
this point is R = Z, but we could also take, for example, a field such as Fp = Z/p
(where p is prime) or Q.

Define a chain complex of R-modules S∗(X;R) by defining Sn(X;R) as the free
R-module generated by the n-simplices in X:

Sn(X;R) = RΣn(X) ∼= Sn(X)⊗Z R.

Define the differential ∂ on simplices by the familiar formula, and in general by
R-linearity. Let Hn(X;R) = Hn(S∗(X;R)), as an R-module.

If A ⊂ X is a subspace then one has an injective chain map S∗(A;R)→ S∗(X;R).
Put

S∗(X,A;R) = S∗(X;R)/S∗(A;R), Hn(X,A;R) = Hn(S∗(X,A;R)).

Then one has a long exact sequence of the pair. Locality, Mayer–Vietoris and
excision hold just as before, as does homotopy invariance. One has H0(X;R) =
Rπ0(X). The homology of a point, Hi(∗;R), vanishes for i > 0. For an n-manifold
M , one has Hi(M ;R) = 0 for all i > n and, in the non-compact case, for i = n. All
these assertions follow from routine generalisations of the proofs we have given.

Slightly trickier is the assertion that, for X path connected, one has

H1(X;R) ∼= π1(X)ab ⊗Z R.

The proof we gave for the case R = Z uses the integer coefficients in a significant
way, but the general case follows from it and the universal coefficients theorem, to
be given in the next lecture. (If you have a simpler proof, tell me!)

15.2. What it’s good for. Homology with coefficients contains no more informa-
tion than ordinary homology, but is useful for the following reasons.

• When R is a field, algebraic properties of homology simplify. For instance,
over a field, passing to homology commutes with the tensor product and
dualisation operations on chain complexes.

• For many spaces, the Z-homology is more complicated than the homology
over the prime fields Z/p or over Q. Moreover, considering these collectively,
one does not lose information. Good examples are RPn and various Lie
groups, notably SO(n).

• When working with manifolds, in Z-homology one must distinguish the ori-
entable and non-orientable cases, but in Z/2-homology this is unnecessary.

15.3. The local homology cover. Recall from the last lecture that the local
homology of an n-manifold (now with R-coefficients) is given by

H∗(M,M \ {x};R) ∼= R(n).

Collectively, these form a covering space HM,R →M with fibres Hn(M,M \{x};R).
(Here one gives Hn(M,M \ {x};R) the discrete topology.) The sections ΓM,R of
this covering space form an R-module. A class z ∈ Hn(M ;R) gives classes zx ∈
Hn(M,M \ {x};R) for all x, and this determines a homomorphism Hn(M ;R) →
ΓM,R.
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Theorem 15.1. The the natural homomorphism Hn(M ;R)→ ΓM,R is injective.

Proof. We may assume M is connected. Fix x ∈ M , and observe that by our
vanishing theorem for homology of non-compact manifolds, Hn(M \ {x}) = 0. The
long exact sequence of the pair therefore reads

0→ Hn(M)→ Hn(M,M \ {x}).
That is, the homomorphism Hn(M)→ Hn(M,M \{x}) is injective. Our vanishing
theorem was proved for Z coefficients, but the proof applies to an arbitrary coeffi-
cient ring. Since it injects into Hn(M,M \ {x}), a fortiori Hn(M ;R) injects into
ΓM,R. �

15.4. Orientations. Depending on the ground ring R, there may be more than one
isomorphism ofR-modulesHn(M,M\{x};R) ∼= R: for instance, whenR = Z, there
are exactly two isomorphisms (the one you first thought of, and its composition with
n 7→ −n). However, when R = Z/2, there is a unique isomorphism.

Definition 15.2. An R-orientation for the n-manifold M at x is an isomorphism
of R-modules

η : Hn(M,M \ {x};R)→ R.

If R is not specified, we understand R = Z.

Define the R-orientation cover

M̃R = {(x, ηx) : x ∈M and η is an R -orientation for M at x},

and let pR : M̃ →M be the projection (x, ηx) 7→ x. The topology is constructed in
much the same way as that of HM (work this through!). Notice that M̃R is itself
an n-manifold. When R = Z, it is a 2-sheeted covering of M . Assuming M is
connected, M̃Z is either connected, hence a non-trivial covering, or disconnected,
hence(!) trivial.

Definition 15.3. An R-orientation for M is a section of p, i.e., a map s : M → M̃
such that pR ◦ s = idM . If an orientation exists, M is called R-orientable. Again,
if no ring is specified we understand R = Z.

Thus an R-orientation for M is a coherent choice of orientations for all points.
Observe that there is automatically a unique (Z/2)-orientation.

The orientation cover is closely related to the local homology cover HM,R →M .
We illustrate this with the case R = Z. If a ∈ Z then the subset

M̃(a) := {(x, hx) ∈ HM,R : ηx(hx) = a for some orientation ηx}

then M̃(a) = M̃(−a). If a 6= 0 then the covering M̃(a) → M is isomorphic to
M̃Z →M , while if a = 0 it is a trivial covering M →M .

15.5. Fundamental classes.

Definition 15.4. (i) If M is an n-manifold, an R-fundamental class for M is a
class z ∈ Hn(M ;R) whose image in Hn(M,M \ {x};R) is a generator, for every
x ∈M .

(ii) More generally, if K ⊂M is a subspace, an R-fundamental class for M at K
is a class z ∈ Hn(M,M \K;R) whose image in Hn(M,M \ {x};R) is a generator,
for every x ∈ K.
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Theorem 15.5. An R-orientation for M determines an R-fundamental class zK at
K, for every compact subspace K ⊂M . The orientation maps zK(x) ∈ Hn(M,M \
{x}) to 1 ∈ R.

Proof. We drop the coefficients from the notation. It is technically easier to prove,
alongside the theorem, that Hp(M,M \K) = 0 for p > n.

Start by supposing K ⊂ U , with U ∼= Rn. Notice that by excision and a
deformation retraction, Hn(M,M \ U) ∼= Hn(Rn,Rn \ {0}). Thus an orientation
determines a fundamental class for M at U , and hence at K. Also, in this case
Hp(M,M \ K) = 0 for p > n by the long exact sequence of the pair and our
vanishing theorem from last time.

A general compact subset K ⊂M , is the union of finitely many compact subsets
Ki, each contained in a neighbourhood Ui ∼= Rn. So, by induction, it suffices to
show that if the theorem (including the statement about p > n) holds for K, L and
K ∩ L then it holds for K ∪ L.

To prove this, we need a relative form of Mayer–Vietoris. If Y ⊂ X, and (Y ;A,B)
is an excisive triad, then one has a long exact sequence

· · · → Hp(X,X \ (A∪B))→ Hp(X,X \A)⊕Hp(X,X \B)→ Hp(X,A∩B)→ . . . .

In our case we get

Hn+1(M,M \ (K ∩L))→ Hn(M,M \ (K ∪L))→ Hn(M,M \K)⊕Hn(M,M \L).

By hypothesis, the module on the left is zero, but we have fundamental classes
zK ∈ Hn(M,M \ (K ∪ L)) and zL ∈ Hn(M,M \ (K ∪ L)) determined by the
orientation. Their difference, in Hn(M,M \ (K ∩ L), is zero, and hence zK + zL
comes from a class zK∪L ∈ Hn(M,M \ (K ∪ L)) which is clearly a fundamental
class. �

Exercise 15.1: Use the locality theorem for chains to derive this relative Mayer–Vietoris
sequence.

Corollary 15.6. If M is compact, connected and R-oriented then Hn(M ;R) = R.
Hence any compact, connected n-manifold M has Hn(M ; Z/2) ∼= Z/2. If it is also
orientable then Hn(M) ∼= Z.

Proof. We know by the last theorem that a fundamental class exists, so the homo-
morphism

Hn(M ;R)→ ΓM,R

is onto. We observed earlier that it is injective. Hence it is an isomorphism. But
ΓM,R

∼= R, and an orientation specifies such an isomorphism. �

Corollary 15.7. If M is connected but not orientable then Hn(M) = 0.

Proof. The natural map Hn(M)→ ΓM is injective. If it had non-trivial image, the
image would contain a section of one of the covers M̃(a) → M with a 6= 0. But
these covers are copies of M̃ →M , and so have no sections by hypothesis. �

Exercise 15.2: Convince yourself that the definition of an orientation at x is not crazy.
More specifically, take R = Z and M to be an n-dimensional vector space V . An
orientation for V in a more familiar sense would be an isomorphism V → Rn, where
two isomorphisms θ1 and θ2 are considered equivalent if det(θ ◦ θ−1

2 ) > 0. Show how
an orientation for the vector space V determines an orientation for V as a manifold, at
any chosen point x.
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Exercise 15.3: If M is given a smooth structure then it is orientable iff there is a smooth
atlas whose transition functions τij have positive Jacobian determinants detDxτij .

Exercise 15.4: A manifold M is orientable if it is simply connected, or more generally,
if π1(M) is finite and has odd order.

Exercise 15.5: If p is odd then a Z/p-orientation determines, and is determined by, a
Z-orientation.

Exercise 15.6: Show that if a group G acts freely on M = Sn, then the orientation
character π1(M/G) = G → Z/2 of the quotient manifold is given by G 3 g 7→
deg(g) ∈ {±1} = Z/2. For which n is RPn orientable?

Exercise 15.7: (i) Show that there is no homeomorphism Hn ∼= Rn, where Hn =
{(x1, . . . , xn) ∈ Rn : x1 ≥ 0}.

(ii) Let M be a space, and N the subspace of points x ∈ M which have a neigh-
bourhood U such that there is a homeomorphism U → Hn sending x to 0. Say M is
an n-manifold with boundary if M \ N is an n-manifold. In that case write ∂M for
the boundary N . Check that that ∂M is an (n− 1)-manifold.

Exercise 15.8: Suppose M is a compact, connected n-manifold with non-empty bound-
ary ∂M . It is a fact (see Hatcher) that there is a neighbourhood U of ∂M and a
homeomorphism U → ∂M × [0, 1) sending any x ∈ ∂M to (x, 0).

(a) Show that Hp(M) = 0 for p ≥ n and Hp(M,∂M) = 0 for p > n.
(b) Show that if M \ ∂M is orientable then Hn(M,∂M) ∼= Z.
(c) Let X be a space. Suppose h ∈ Hn−1(X) is a homology class that is repre-

sentable by a manifold, in that there is a compact oriented n − 1-manifold N with
fundamental class zN and a map f : N → X with f∗zN = h. Show that h = 0 if
N = ∂M for a compact oriented n-manifold with ∂M = N such that f extends to
F : M → X.

Exercise 15.9: Let h : S3 → S2 denote the Hopf map, given by

h(z1, z2) 7→ z1/z2.

Here we think of S3 as the unit sphere in C2 and of S2 as the Riemann sphere C∪{∞}.
Let ω be a generator for H3(S3) = Z. Then h∗ω = 0, since H3(S2) = 0. Can you find
a direct explanation for why the particular class h∗ω should be zero? In other words,
can you find a 4-chain bounding a 3-cycle representing h∗ω?
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16. Universal coefficients

In this lecture, we address the following question. Let C∗ be a chain complex over
R, and Q an R-module. How does one compute H(C∗ ⊗R Q) in terms of H(C∗)?
We obtain a solution when R is a principal ideal domain (PID) and C∗ is a free
R-module.

16.1. Homology with coefficients. Last time, we introduced homology H∗(X; k)
with coefficients in a ring k. This was defined as the homology of the complex of
k-modules

kΣ∗(X) = S∗(X)⊗Z k.

What is its relation to H∗(X)? The answer is supplied by the universal coefficients
theorem:

Theorem 16.1 (Universal coefficients: homology version). There are short exact
sequences of k-modules,

0→ Hn(X)⊗ k → Hn(X; k)→ TorZ(Hn−1(X), k)→ 0,

natural in X. These sequence split, so Hn(X; k) ∼= Hn(X) ⊕ TorZ(Hn−1(X), k),
but the splitting cannot be chosen naturally in X.

A first task will be to explain what Tor is.

16.2. Tor. Fix a commutative ring R (for instance Z) and an R-module Q. We
investigate the effect on exact sequences of the functor · ⊗ Q from R-modules to
R-modules. (Later we may suppose that Q is actually an R-algebra, and think of
· ⊗Q as a functor from R-modules to Q-modules.)

Lemma 16.2. Let 0 → M1
i→ M2

p→ M3 → 0 be a short exact sequence of R-
modules. Let Q be another R-module. Then the induced sequence

M1 ⊗Q→M2 ⊗Q→M3 ⊗Q→ 0

is also exact. If the short exact sequence splits (for instance, if M3 is a free module)
then M1 ⊗Q→M2 ⊗Q is injective.

Proof. Take m3 ⊗ q ∈ M3 ⊗ Q. Say q = p(m2). Then (p ⊗ id)(m2 ⊗ q) = m3 ⊗ q.
Hence p⊗ id is onto.

Now, (p ⊗ id) ◦ (i ⊗ id) = (p ◦ i) ⊗ id = 0, and hence there is an induced
map [p ⊗ id] : (M2 ⊗ Q)/ im(i ⊗ id) → M3 ⊗ Q. Exactness of the sequence at
M2 ⊗ Q is equivalent to the assertion that [p ⊗ id] is injective. But im(i ⊗ id) =
im i⊗Q = ker p⊗Q, and hence we can define s : M3 ⊗Q→ (M2 ⊗Q)/ im(i⊗ id)
by s(m⊗ q) = [p−1m⊗ q]. We have s ◦ [p⊗ id] = id, so [p⊗ id] is indeed injective.

Now suppose the sequence splits. Then there is a homomorphism l : M2 → M2

with l ◦ i = id. Thus l⊗ id : M2 ⊗Q→M1 ⊗Q satisfies (l⊗ id) ◦ (i⊗ id) = id⊗ id,
hence i⊗ id is injective. �

In general, i ⊗ id is not injective, but its kernel can be measured by the intro-
duction of the ‘torsion products’. For simplicity, we assume R is Z, a field, or more
generally a principal ideal domain (PID). A PID is a commutative ring R such that
(i) xy = 0 implies x = 0 or y = 0, and (ii) every ideal is of form (x) = {ax : a ∈ R}.
The simplification in the present context because if R is a PID then every submodule
of a free R-module is free, i.e., has a basis. For the proof see, e.g., Lang’s Algebra,
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Appendix 2 (in the general case, not restricted to finite rank free modules, this uses
Zorn’s lemma).

This has the following consequence: any R-module M has a two-step free reso-
lution, i.e. an exact sequence

0→ F1
f1→ F0

f0→M → 0

with F0 and F1 free. Just take any generating set S for M , let F0 be free on S, and
let F1 be the kernel of the natural map F0 →M .

Applying · ⊗Q to this sequence, we obtain a complex

0→ F1 ⊗Q
f1⊗id→ F0 ⊗Q

f0⊗id→ M ⊗Q→ 0

which is exact at M ⊗Q and at F0⊗Q. We prefer to truncate this to the complex

0→ F1 ⊗Q
f1⊗id→ F0 ⊗Q→ 0.

By the lemma, its homology at F0 ⊗ Q (i.e., the cokernel of f1 ⊗ id) is naturally
isomorphic to M ⊗Q. We define Tor(M,Q) to be its homology at F1 ⊗Q:

Tor(M,Q) = ker f1 ⊗ id.

In brief: to define Tor, we took a free resolution of M , tensored it with Q, and
measured its failure to be exact by taking homology.

The next point is that Tor(M,Q) is independent of the choice of free resolution.
It is convenient to think of 0 → F1 → F0 as a chain complex F∗, and of f0 as an
‘augmentation’ (F∗ →M) of the complex.

Lemma 16.3. Take two free resolutions (F∗
f0→M) and (G∗

g0→M). Then there is
a chain map α : F∗ → G∗ such that g0 ◦α = f0. Moreover, α is unique up to chain
homotopy.

The proof is left as an exercise.

Proposition 16.4. Tor(M,Q) is independent of the choice of two-step free reso-
lution F∗ →M → 0.

Proof. In the notation of the last lemma, we have to compare the homologies of the
complexes F∗ ⊗Q and G∗ ⊗Q. But the lemma supplies us with an augmentation-
preserving chain maps α : F∗ → G∗ and β : G∗ → F∗. Moreover, the uniqueness
clause tells us that βα is chain homotopic to the identity; likewise αβ. Thus α⊗ id
and β⊗ id give chain-homotopy equivalences between F∗⊗Q and G∗⊗Q, showing
that they have canonically isomorphic homologies. �

Example 16.5. • When R is a field we may take F0 = M and F1 = 0. Thus
Tor(M,Q) = 0, consistent with our first lemma.

• If M is torsion-free over the PID R, we may take F0 = M have Tor(M,Q) =
0 for any Q and F1 = 0. Hence Tor(M,Q) = 0 for all Q.

• The R-module M = R/(x) has the free resolution 0→ R
x→ R→ R/(x)→

0. Thus

Tor(R/(x), Q) = ker(x⊗ id : R⊗Q→ R⊗Q) = ker(x : Q→ Q),

i.e., Tor(R/(x), Q) is the x-torsion in Q. For instance, if p is prime then
Tor(R/(pn), R/(p)) = R/(p).



ALGEBRAIC TOPOLOGY I: FALL 2008 55

16.3. Universal coefficients.

Theorem 16.6 (Universal coefficients). Let C∗ be a chain complex of free R-
modules over a PID R. Then, for any R-module Q, one has short exact sequences

0→ Hp(C∗)⊗Q
j→ Hp(C∗ ⊗Q)

p→ Tor(Hp−1(C∗), Q)→ 0,

where the map j is induced by the inclusion ker dp ⊗ Q → ker(dp ⊗ idQ). These
sequences are functorial in C∗. They always split, but not in a natural way.

Proof of universal coefficients. We let ip : Bp → Zp be the inclusion of the p-
boundaries into the p-cycles. From the free resolution

0→ Bp
ip→ Zp → Hp(C∗)→ 0

for the homology Hp(C∗), we see that

coker(ip ⊗ id) = Hp(C∗)⊗Q, ker(ip−1 ⊗ id) = Tor(Hp−1(C∗), Q).

Now consider the short exact sequence

0→ Zp → Cp
dp→ Bp−1 → 0.

Since the terms are free modules, the sequence splits, and so the sequence

0→ Zp ⊗Q
jp⊗id→ Cp ⊗Q

dp⊗id→ Bp−1 ⊗Q→ 0

is also exact. It is, moreover, a short exact sequence of chain complexes, so it induces
a long exact sequence of homology groups. With a little thought one identifies the
connecting maps; the long exact sequence reads

· · · → Hp+1(C∗ ⊗Q)→ Bp ⊗Q
ip⊗id→ Zp ⊗Q→ Hp(C∗ ⊗Q)→ . . . ,

with ip : Bp → Zp the inclusion. Its exactness tells us that there are short exact
sequences

0→ coker(ip ⊗ id)→ Hp(C∗ ⊗Q)→ ker(ip−1 ⊗ id)→ 0,

i.e.,
0→ Hp(C∗)⊗Q→ Hp(C∗ ⊗Q)→ Tor(Hp−1(C∗), Q)→ 0.

It is left as an exercise to think through why the map on the left is j. A splitting

arises from a chosen splitting of 0 → Zp → Cp
dp→ Bp−1 → 0; again, this is left as

an exercise.
It is also left as an exercise to see that the whole sequence is functorial in C∗.

The non-naturality of the splittings will follow from a topological example in one
of the exercises below. �

Notice that ifQ is a commutativeR-algebra, thenHp(C∗)⊗Q and Tor(Hp−1(C∗), Q)
are naturally Q-modules. And, rather obviously, the universal coefficients theorem
is valid as a statement about Q-modules. In particular taking R = Z and Q = k,
we obtain the topological universal coefficients theorem stated at the outset.
Exercise 16.1: Compute H∗(K), where K is the Klein bottle. Now computeH∗(K; Z/2n)
(i) by a direct argument, and (ii) using universal coefficients.
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Exercise 16.2: Prove that the splittings of the universal coefficient theorem cannot
be chosen naturally in X by means of the following example. Take an embedding
i : R2 → RP 2, let D = i({z ∈ R2 : |z| < 1}), and let q be the quotient map
RP 2 → RP 2/(RP 2\D) ∼= S2. Show that the k = Z/2 universal coefficients sequences
for RP 2 and S2 cannot be split compatibly with q.

Exercise 16.3: This exercise develops an alternative approach to a special case of uni-
versal coefficients. Let C∗ be a chain complex of free abelian groups. Show that
tensoring by the short exact sequence 0 → Z → Z → Z/n → 0 gives rise to a short
exact sequence of chain complexes 0→ C∗ → C∗ → C∗⊗Z/n→ 0. By analyzing the
resulting long exact sequence of homology groups, deduce a short exact sequence

0→ Hp(C∗)⊗Z Z/n→ Hp(C∗ ⊗ Z/n)→ {x ∈ Hp−1(C∗) : nx = 0} → 0.
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III. Cellular homology

17. CW complexes

We introduce a manageable category of spaces and maps, the category of CW
complexes and cellular maps.

CW complexes are a particularly convenient and useful class of spaces to work
with, for a number of reasons.

• There is an efficient and geometrically clear way of computing the homology
groups of a CW complex.
• Maps between CW complexes behave far better than maps between general

spaces: a weak homotopy equivalence between CW complexes is a homotopy
equivalence. A weak equivalence f : X → Y is a map which induces bijec-
tions hTop(Sn, X)→ hTop(Sn, Y ), h 7→ f ◦h for all n (here hTop(Sn, X)
denotes the set of homotopy class of maps).
• One can localise the category hTop, artificially inverting the weak equiva-

lences to form the topological derived category. Simplistically, performing
this localisation is equivalent to working with CW complexes. The precise
statement is that the topological derived category is equivalent to the ho-
motopy category of CW spectra, see C. Weibel, Introduction to homological
algebra, Chapter 10.
• On a smooth compact manifold M , a Morse function gives rise to a cell

structure making M a CW complex.

Definition 17.1. The n-cell en is the closed unit disc Dn ⊂ Rn. For n > 0, its
boundary is ∂en = Sn−1. We put ∂e0 = ∅. If A is a space, and f : Sn−1 → A a
map, we can build a space

Cf = en ∪f A = (Aq en)/ ∼ where f(x) ∼ x for x ∈ ∂en.

We say that A∪f en results from attaching an n-cell to A via the attaching map f .

The notation Cf refers to the general notion of the ‘homotopy cofiber’ Cf =
CX ∪f Y of a map f : X → Y , where CX = X × I/X × {1} is the cone on X.

Example 17.2. Let c : Sn−1 → e0 be the constant map. Then Sn ∼= Cc = en∪c e0.

Two crucial observations are:
• that Cf contains A as a closed subspace; and
• that the quotient Cf/A is homeomorphic to en/∂en, hence to Sn.

More generally, given an indexing set I and a map f =
∐
i∈I fi :

∐
i∈I ∂en → A,

we can build a space

Cf = (Aq
∐
i

en)/ ∼ where fi(x) ∼ x for x ∈ ∂en.

The images of the fi need not be disjoint. We say Cf is obtained by attaching
n-cells to A.

Note that Cf/A ∼=
∨
i∈I S

n.

Definition 17.3. A cell complex of dimension ≤ d is a space X together with a
sequence of closed subspaces

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xd = X
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such that each Xk+1 is obtained from Xk by attaching a (possibly empty) collection
of n-cells. We call Xk the k-skeleton of X. A cell complex is a space X together
with a sequence of closed subspaces

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ X2 ⊂ . . .
such that X =

⋃
kX

k. A cell complex is a CW complex if X has the weak topology,
i.e. U ⊂ X is open iff U ∩Xk is open in Xk for each k.

(I’m not sure how standard my usage of the term ‘cell complex’ is here. However,
the term ‘CW complex’ is certainly standard.)

Mostly we shall work with cell complexes with finitely many cells, which are
automatically CW complexes.

Remark. It is perhaps a pity that J. H. C. Whitehead’s term ‘CW complex’, which
refers to certain technical properties, has not been replaced by something more
descriptive. ‘W’ is for ‘weak topology’; ‘C’ for ‘closure finiteness’, the property
that the image of each closed cell intersects the interiors of only finitely many cells
of lower dimension. In this as in other aspects of algebraic topology, there were
many possible variants of the definition—the ones that we use lead to a streamlined
theory, and most of the others do not, but this is far from obvious.

Example 17.4. A graph is just a CW complex of dimension ≤ 1.

Example 17.5. The ‘Hawaiian earring’, i.e. the union
⋃
n≥1 Cn of circles Cn in

R2 of radius n−1 centered at n−1, is naturally a cell complex, but the topology
inherited from R2 does not make it a CW complex (

⋃
C2n \ {0} is open in the

weak topology but not the subspace topology).

Example 17.6. The 2-torus T 2 has the structure of a CW complex with one 0-
cell, one 1-cell (so the 1-skeleton is S1) and one 2-cell. The same goes for the Klein
bottle K2. The real projective plane RP 2 has the structure of a CW complex with
two 0-cells, one 1-cell and one 2-cell.

Example 17.7. Complex projective space CPn = (Cn+1\{0})/C∗ is a cell complex
e2n ∪ e2n−2 ∪ · · · ∪ e0. To see this, define

X2k = {[z0, . . . , zn] ∈ CPn : zj = 0 for all j > k}.
Thus X0 ⊂ X2 ⊂ · · · ⊂ X2n = CPn, and X2k ∼= CP k. We will exhibit X2k

as the 2k-skeleton of a cell decomposition. If [z] ∈ X2k \ X2(k−1) ⊂ CPn then
zk+1 = · · · = zn = 0 but zk 6= 0, so [z] = [w1, . . . , wk−1, 1, 0 . . . , 0] for a unique
(w0, . . . , wk−1) ∈ Ck. Thus X2k \X2(k−1) ∼= Ck. Thus CPn is a disjoint union of
open cells, one of each even dimension up to 2n. To see that they are attached in
the proper way, think of e2k as {w = (w0, . . . , wk−1) ∈ Ck : |w| ≤ 1} and define
i2k : e2k → X2k−2 as follows:

ik(w) = (w0, . . . , wk−1, (1− |w|2)1/2, 0, . . . , 0).

This map extends to a homeomorphism e2k ∪fk
X2k−2 → Xk which restricts to

the inclusion on X2k−2, where fk : S2k−1 → X2k−2 is given by fk(ζ0, . . . , ζk) =
[ζ0, . . . , ζk, 0, . . . , 0].

Example 17.8. Let C[t] be the C-vector space of polynomials in t. Denote by CP∞
its projective space (C[t] \ {0})/C∗. Then CP∞ is a CW complex with 2k-skeleton
(and 2k + 1-skeleton) CP k.
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17.1. Compact generation. CW complexes are examples of compactly generated
spaces. A space X is compactly generated if (i) it is ‘weak Hausdorff’, meaning
that any compact Hausdorff subspace is closed, and (ii) every ‘compactly closed’
subspace is closed. Here a subspace A ⊂ X is compactly closed if g−1(A) is closed
in K for every compact Hausdorff space K and every map g : K → X.

There’s a functor k from weak Hausdorff spaces to compactly generated spaces
(the closed sets of kX are the compactly closed sets of X). Algebraic topologists like
to work in the category of compactly generated spaces because compact generation
is a more intrinsic notion than that of a (space homotopy equivalent to a) CW
complex, and because this category has excellent properties. The quotient of a
compactly generated space by a closed equivalence relation is compactly generated.
The direct limit of compactly generated spaces is compactly generated. Define a
product X × Y in this category to be k(X × Y ) (k applied to the usual product);
and define Y X as kMap(X,Y ) where Map(X,Y ) has its compact–open topology.
Then the canonical bijection ZX×Y ∼= (ZY )X is a homeomorphism. For instance,
a homotopy I ×X → Y is the same thing as a map X → Y I .

17.2. Degree matrices. A good deal of information about how a CW complex
X =

⋃
kX

k is built is encoded in its ‘degree matrices’ Dn.
Suppose that for each n, one has a labelling of the n-cells as e1, . . . , eN(n). Define

an N(n − 1) × N(n) matrix Dn with integer entries as follows: the matrix entry
Dij
n is equal to the degree of the map

πj ◦ qn−1 ◦ fi : Sn−1 → Sn−1,

where fi : Sn−1 → Xn−1 is the attaching map for ei; qn−1 : Xn−1 → Xn−1/Xn−2

the quotient map; and πj : Xn−1/Xn−2 =
∨
j S

n−1 → Sn−1 the map which col-
lapses all the spheres in the wedge except the jth.
Exercise 17.1: Compute degree matrices for the above-mentioned CW structures on
T 2, RP 2 and K2.

Remark. The degree matrix has a geometric interpretation in Morse theory. Fix a
smooth Riemannian manifold (M, g). If f is a Morse function on M then the union
of the unstable manifolds (with respect to g) of the critical points is a subspace M ′

such that M ′ → M is a homotopy equivalence. M ′ has a canonical cell decompo-
sition in which the p-cells are the unstable manifolds of the index p critical points
cip. If now cjp−1 is an index p − 1 critical point then the matrix entry Dp

ij for the
cell decomposition is the signed count of downward gradient flow lines from cip to
cjp−1. (To make this count finite and meaningful, we perturb the pair (f, g) so that
it satisfies the ‘Morse–Smale’ transversality condition.)

17.3. Cellular approximation. The following theorem is not especially difficult
to prove, but we shall nonetheless omit the proof.

Theorem 17.9 (Cellular approximation of maps). Let f : X → Y be a map between
CW complexes. Then f is homotopic to a cellular map, i.e. a map g such that
g(Xk) ⊂ Y k for all k.

The next theorem is best proved using a little homotopy theory. Again we shall
omit the proof.

Theorem 17.10 (CW approximation of spaces). There is a procedure which assigns
to any space X a CW complex Γ(X) and a weak homotopy equivalence ΓX → X.
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Moreover, the procedure can be made functorial, in the sense that if f : X → Y is
a map then there is a map Γf : ΓX → ΓY so that the obvious square commutes up
to homotopy.

This theorem has an important consequence. If one wants to prove a theorem
about the homology of general spaces, it suffices to prove it for CW complexes; by
cellular approximation of maps, one can also take the maps to be cellular.
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18. Cellular homology

We compute the singular homology of cell complexes in terms of the cells and
the degree matrix obtained from their attaching maps.

Let X be a CW complex, and Xk its k-skeleton; thus

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂
⋃
k≥0

Xk = X.

We wish to compute H∗(X) in terms of the cells and their attaching maps.
One of the convenient properties of CW complexes is that the subspace Xn−1

of Xn has an open neighbourhood U which deformation-retracts to Xn−1. Also
Xn−1 is closed in Xn. Hence (this was an exercise using the excision theorem), one
has H∗(Xn, Xn−1) = H̃∗(Xn/Xn−1) when Xn−1 6= ∅.

Now, the idea of our calculation is to exploit the fact that Xn/Xn−1 is a very
simple space:

Xn/Xn−1 ∼=
∨

n-cells

Dn+1/∂Dn+1 =
∨

n-cells

Sn.

Thus Hn(Xn, Xn−1) = Z{n-cells}.
Define δn+1 as the connecting homomorphism

Hn+1(Xn+1, Xn)
δn+1→ Hn(Xn)

from the exact sequence of the pair (Xn+1, Xn). Define qn as the natural map

Hn(Xn)
qn→ Hn(Xn, Xn−1).

Theorem 18.1. Let Cn = Hn(Xn, Xn−1) = Z{n-cells}. Define dn = qn−1 ◦
δn : Cn → Cn−1. Then one has dn ◦ dn+1 = 0. The homology Hn(C∗) of the
chain complex

· · · → Cn+1
dn+1→ Cn

dn→ Cn−1 → . . .

is canonically isomorphic to the singular homology Hn(X).

This theorem is very useful as a computational tool, as we will see next time.
For now, we record two simple corollaries.

Corollary 18.2. If X is a d-dimensional CW complex then Hn(X) = 0 for all
n > d. If X is a CW complex with a finite number l of n-cells then the rank of
Hn(X) is finite and ≤ l.

Corollary 18.3. If X is a CW with only even-dimensional cells then Hn(X) =
Z{n-cells} for all n. In particular, H∗(CPn) = Z(0) ⊕ Z(2) ⊕ · · · ⊕ Z(2n), where the
subscripts denote degrees of the Z-summands.

Proof of the theorem. We will simplify by assuming that X is finite-dimensional,
i.e., that X = Xd for some d ≥ 0. We also assume that X 6= ∅, which forces
X0 6= ∅.

Step 1. We have already mentioned this step. By excision (which applies because
Xn−1 is a deformation retract of an open neighbourhood in Xn) one has, for n > 0,

Hk(Xn, Xn−1) ∼= Hk(
∨

n-cells

Sn, ∗) = H̃k(
∨

n-cells

Sn) ∼=
⊕
n-cells

H̃k(Sn).

Thus one has
Hn(Xn, Xn−1) ∼= Z{n-cells},
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and this is valid even when n = 0.
Step 2. From the long exact sequence of the pair (Xn, Xn−1), one sees that, for

k > n ≥ 0, Hk(Xn) = Hk(Xn−1), and thus iteratively Hk(Xn) = Hk(X0) = 0. So,
when X = Xd, X has homology only up to dimension d.

Step 3. From the long exact sequence of the pair (Xn+1, Xn), one sees that, for
k < n+1, Hk(Xn) = Hk(Xn+1). Thus, iteratively, Hk(Xn) = Hk(Xn+p) = Hk(X)
since Xn+p = X for all n + p ≥ d. So to compute nth homology we can get away
with considering the n+ 1-skeleton of X:

Hn(X) = Hn(Xn+1)

Step 4. Part of the long exact sequence of the pair (Xn+1, Xn) reads

Hn+1(Xn+1, Xn)
δn+1→ Hn(Xn)→ Hn(Xn+1)→ 0.

Thus Hn(X) = Hn(Xn+1) is isomorphic to coker δn+1. This represents progress,
since the domain of δn+1 is a known group Z{(n+1)-cells}.

Step 5. The target of δn+1, Hn(Xn), sits in another exact sequence

0→ Hn(Xn)
qn→ Hn(Xn, Xn−1)→ Hn−1(Xn−1)

(the zero on the left comes from Step 3). So, crucially, the map qn is injective. Let
dn+1 = qn ◦ δn+1. Here’s the tricky step: one has

Hn(X) ∼= Hn(Xn)/ im δn+1
∼= im qn/ im dn+1,

since qn carries Hn(Xn) isomorphically to im qn and im δn+1 isomorphically to
im dn+1.

Step 6. One has

im qn = ker
(
δn : Hn(Xn, Xn−1)→ Hn−1(Xn−1)

)
= ker

(
dn−1 : Hn(Xn, Xn−1)→ Hn(Xn−1, Xn−2)

)
.

Thus
Hn(X) ∼= Hn(Xn)/ im δ ∼= ker dn/ im dn+1.

Note that dn ◦ dn+1 = 0 because δn ◦ qn = 0. �

Remark. Let us make a note of what we have used in the proof. We needed excision
and the long exact sequence of the pair. We also needed the fact that the reduced
homology of a wedge is the direct sum of the reduced homologies. We needed
to know that H̃∗(Sn) = Z(n). Recall that this was proved using excision (and
homotopy invariance of singular homology) by an inductive argument beginning
with H̃k(S0) = Z.

We have Cn = Z{n-cells} and Cn−1 = Z{(n−1)-cells}, so dn is represented by an
integer-valued matrix (Dij

n ):

Dn〈i〉 =
∑
j

Dij
n 〈j〉,

where 〈i〉 represents an n-cell and the sum is over (n− 1)-cells j.

Theorem 18.4. For any n > 1, the matrix Dn representing the differential dn
is equal to the degree matrix for the cellular attachments. The differential d1 is
characterized by d〈i〉 = 〈fi(1)〉 − 〈fi(0)〉.
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Proof. We can think of the closure of the cell ek as an k-simplex (since it is home-
omorphic to ∆k. Thus the ith Z-summand in Hn(Xn, Xn−1) is represented by the
cell ein, considered as a singular chain (notice that it is a relative n-cycle, since its
boundary lies in Xn).

Under δn, the singular chain ein is mapped to its boundary, which is the image
of the fundamental class [Sn] ∈ Hn(Sn) under the cellular attaching map fi: that
is, δnein = (fi)∗[Sn−1]. Next we have to apply the quotient map qn : Xn−1 →
Xn−1/Xn−2, since dn(ein) = (qn−1)∗(fi)∗[Sn−1] ∈ Hn(Xn−1/Xn−2).

The projection Hn(Xn−1/Xn−2)→ Z to the jth Z-summand is induced by the
collapsing map

πj : Xn−1/Xn−2 =
∨

(n−1)−cells

Sn−1 → Sn−1

which acts as the identity on jth copy of Sn−1 and sends everything else to the
wedge point. Thus the jth component of δnein is

(πj)∗(qn−1)∗(fi)∗[Sn−1] = (πj ◦ qn−1 ◦ fi)∗[Sn−1] ∈ Hn−1(Sn−1).

But this is exactly the definition of the degree matrix Dn. �
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19. Cellular homology calculations

We compute some examples of cellular homology, and observe the uniqueness of
homology theories.

We begin by repeating the theorem from last time:

Theorem 19.1. If X is a CW complex then the homology of the cellular complex
(C∗, d) is canonically isomorphic to H∗(X). Here Cn = Z{n-cells} and Cn−1 =
Z{(n−1)-cells}, so the cellular differential dn is represented by an integer-valued ma-
trix (Dij

n ):

Dn〈i〉 =
∑
j

Dij
n 〈j〉,

where 〈i〉 represents an n-cell and the sum is over (n− 1)-cells j.
When n > 1, the matrix entry Dij

n is the degree of πj ◦ Qn−1 ◦ fi : Sn−1 →
Sn−1, where fi is the attaching map of the ith n-cell, Qn : Xn−1 → Xn−1/Xn−2 =∨

(n−1)−cells S
n−1 the quotient map, and πj : Xn−1/Xn−2 → Sn−1 the collapsing

map on the jth wedge-summand. The differential d1 is characterized by d1〈i〉 =
〈fi(1)〉 − 〈fi(0)〉.

19.1. Calculations. Let us use this theorem to compute the homology of T 2, RP 2

and K2. The homology vanishes in degrees > 2, because these are 2-dimensional
cell complexes, but the interesting thing is to compute H1 and H2.

• X = T 2 has an obvious cell decomposition with one 0-cell, two 1-cells and
one 2-cell. These cells give bases v0 for C0, (va1 , v

b
1) for C1, and v2 for C2.

One has d1v
a
1 = v0 − v0 = 0 = d1v

b
1. The attaching map for the 2-cell is

a map S1 → S1
a ∨ S1

b . For T 2 it is aba−1b−1, so after collapsing S1
b we

get a map homotopic to a · a−1 : S1 → S1
a (which has degree 0), and after

collapsing S1
b we get a map homotopic to b · b−1 : S1 → S1

b (alslo degree 0).
Hence d2v2 = 0. So H2(T 2) = Z and H1(T 2) = Z2.
• X = K2 has a cell decomposition with X0 = e0, X1 = ea1 ∪ eb1 ∪X0, and
X = X2 = e2 ∪X1. These cells give bases v0 for C0, (va1 , v

b
1) for C1, and

v2 for C2. As for T 2, one has d1 = 0. The attaching map for e2 is aba−1b,
so d2v2 = 2vb1. Hence H2(K2) = 0 and H1(K2) = Z⊕ (Z/2).
• X = RP 2 has a cell decomposition with two 0-cells, two 1-cells, and one

2-cell. These cells give bases (v0, v
′
0) for C0, (va1 , v

b
1) for C1, and v2 for C2.

Our conventions are such that d1(va1 ) = v′0 − v0 = −d1(vb1); thus ker d1 =
Z(va1 + vb1). The attaching map for e2 is then abab, so d2v2 = 2va1 + 2vb1.
Hence H2(K2) = 0 and H1(K2) = Z/2.

Happily, these calculations are consistent with our earlier results concerning π1.

Example 19.2. Real projective space RPn = (Rn+1 \ {0})/R∗ is a cell complex
with one k-cell of each dimension k ∈ {0, 1, . . . , n}. To see this, define

Xk = {[x0 : · · · : xn] ∈ RPn : xj = 0 for all j > k}.

Thus X0 ⊂ X1 ⊂ · · · ⊂ Xn = RPn, and Xk ∼= RP k. We will exhibit Xk as the k-
skeleton of a cell decomposition. If [x] ∈ Xk \Xk−1 ⊂ RPn then xk+1 = · · · = xn =
0 but xk 6= 0, so [x] = [y0 : . . . , yk−1 : 1 : 0 · · · : 0] for a unique (y0, . . . , yk−1) ∈ Rk.
Thus Xk \ Xk−1 ∼= Rk. Thus RPn is a disjoint union of open cells, one of each
dimension up to n. To see that they are attached in the proper way, think of ek as
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{y = (y0, · · · : yk−1) ∈ Rk : |y| ≤ 1} and define ik : ek → Xk as follows:

ik(y) = (y0 : · · · : yk−1 : (1− |y|2)1/2 : 0 : · · · : 0).

Then ik is injective on the interior of ek, but restricts to ∂ek = Sk−1 as the map
fk(ζ0, . . . , ζk−1) = [ζ0 : . . . , ζk−1 : 0 : · · · : 0] which is the quotient map Sk−1 →
Xk−1 = RP k−1. Notice that ik extends to a homeomorphism ek ∪fk

Xk−1 → Xk

which restricts to the inclusion on Xk−1.
To compute the cellular chain complex, we need to look at the composite Qk−1 ◦

fk, where Qk−1 : Xk−1 → Xk−1/Xk−2 = Sk−1 is the collapsing map. Well, when
|y| = 1, we have fk(y0, . . . , yk−1) = [y0 : · · · : yk−1 : 0 : . . . 0]. Thus fk(y) ∈ Xk−2

precisely when yk−1 = 0. Cut Sk−1 into two hemispheres Dk−1
± = {(y0, . . . , yk−1) :

|y| = 1,±yk−1 ≥ 0}. Then, if y ∈ int(Dk−1
+ ), we have

i−1
k−1 ◦ fk(y) = i−1

k−1 ◦ ik(y)

= i−1
k−1(y0 : · · · : yk−1 : 0 : · · · : 0)

= (y0, . . . , yk−2)

(check the last line for yourself!). If y ∈ int(Dk−1
+ ), then we have instead

i−1
k−1 ◦ fk(y) = (−y0, . . . ,−yk−2).

We now see that the cellular differential dk is given by dk〈ek〉 → λ〈ek−1〉, where λ
is the degree of the composite map

Sk−1 p→ Sk−1 ∨ Sk−1 id∨a→ Sk−1.

Here p is the ‘pinching map’ that collapses the equator to the wedge point. The
second map acts as the identity on the first wedge summand Sk−1

+ and as the
antipodal map a on the second wedge summand Sk−1

− . Now, on fundamental classes
we have p∗[Sk−1] = [Sk−1]+ + [Sk−1]−, whilst (id∨ a)∗ maps [Sk−1]+ + [Sk−1]− to
(1 + deg(a))[Sk−1] = (1 + (−1))[Sk−1]. Thus λ = 1 + (−1)k.

Hence the cellular complex reads

· · · → Z 0→ Z 2→ Z 0→ Z→ 0.

So we find the following: if n is even then

Hk(RPn) =


Z, k = 0,
Z/2, k < n odd
0, k < n even
0, p ≥ n.

If n is odd then

Hk(RPn) =



Z, k = 0,
Z/2, k < n odd
0, k < n even
Z, k = n,

0, p > n.
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Taking the last example further, let’s now calculate H∗(RPn; Z/2). We can do
this in two ways. One way is to use the cellular chain complex reduced mod 2,
which reads

0→ Z/2→ Z/2→ · · · → Z/2→ 0
with a Z/2 in each degree between 0 and n. The maps are all zero. Hence
Hi(RPn; Z/2) = Z/2 if 0 ≤ i ≤ n, and it is zero otherwise.

The other method is to use our calculation for Z-coefficients in conjunction with
universal coefficients. For n even, say, the Z/2-module Hk(RPn)⊗Z/2 is Z/2 for
k = 0 or 0 < k < n odd, and 0 otherwise. However, Tor(Hk−1(RPn),Z/2) is Z/2
if k − 1 > 0 with k even, and is zero otherwise. Thus for any k between 0 and n,
the flanking terms in the universal coefficients exact sequence

0→ Hk(RPn; Z)⊗Z Z/2→ Hk(RPn; Z/2)→ Tor(Hk−1(RPn),Z/2)→ 0

always consist of Z/2 and 0 (in some order), hence Hk(RPn; Z/2) = Z/2.
Exercise 19.1: Compute H∗(RPn; Z/4). Do it in two ways: via the Z/4 cellular chain
complex; and via the homology over Z and universal coefficients.

Exercise 19.2: Use cellular homology to compute H∗(Σg), where Σg is a standard
closed, orientable surface of genus g (defined, for instance, as a quotient of the 4g-
gon). Also, compute H∗(Σg#RP 2), the connected sum of Σg and RP 2.

Exercise 19.3: Describe how the product X × Y of finite CW complexes X and Y
inherits a structure of CW complex.

(1) Compute the Euler characteristic χ(X × Y ) in terms of χ(X) and χ(Y ).
(2) Show that Ccell∗ (X × Y ) = Ccell∗ (X) ⊗ Ccell∗ (Y ) as a graded abelian group.

(You are not asked to compute the differential.)
(3) Compute H∗(Sn × Sn).
(4) Let X = (S3)×n = S3 × · · · × S3. Show that H3p(X) is isomorphic to the

exterior power ΛpZn, and that Hq(X) = 0 if q is not a multiple of 3.
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20. The Eilenberg–Steenrod axioms

We show that the Eilenberg–Steenrod axioms uniquely characterize a homology
theory for CW pairs.

A CW pair (X,A) is a CW complex X and a subspace A which is a subcomplex,
i.e. it is a union of cells of X which form a CW complex.

Definition 20.1. An Eilenberg–Steenrod homology theory E∗ on CW pairs as-
signs:

• To each CW pair (X,A), and each integer n, an abelian group En(X,A)
(and we write En(X) for En(X, ∅)).
• To each map f : (X,A) → (X ′, A′) and each n ∈ Z it assigns a homomor-

phism En(f) : En(X,A)→ Hn(X ′, A′). One has En(f ◦g) = En(f)◦En(g)
and En(id(X,A)) = idEn(X,A). If f0 is homotopic to f1 via a homotopy {ft}
such that ft|A = f0|A, then En(f1) = En(f0).
• To each pair of spaces (X,A), and each integer n, it assigns a homomor-

phism
δn : En(X,A)→ En−1(A).

These maps are natural transformations. That is, given f : (X,A) →
(X ′, A′), one has

δn ◦ En(f) = En−1(f) ◦ δn
as homomorphisms En(X,A)→ En−1(A′).

Besides these basic properties, the following axioms are required to hold:
• DIMENSION: If ∗ denotes a 1-point space then En(∗) = 0 for n 6= 0, while
E0(∗) = Z.
• EXACTNESS: The sequence

· · · → En(A)→ En(X)→ En(X,A) δn→ En−1(A)→ Hn−1(A)→ . . .

is exact, where the unlabelled maps are induced by the inclusions (A, ∅)→
(X, ∅) and (X, ∅)→ (X,A).
• EXCISION: if (X;A,B) is an excisive triad then the map

En(A,A ∩B)→ En(X,B)

induced by the inclusion (A,A ∩B)→ (X,B) is an isomorphism.
• ADDITIVITY: If (Xα, Aα) is a family of pairs, then one has an isomorphism⊕

α

En(Xα, Aα)→ En(
∐
α

Xα,
∐
α

Aα)

given by the sum of the maps induced by the inclusions into the disjoint
union.

Theorem 20.2 (Eilenberg–Steenrod). Take any homology theory E∗ on CW pairs.
Then for any CW complex X, one has En(X,A) ∼= Hn(X,A). In fact, there is a
unique natural transformation E∗ → H∗ extending a given isomorphism E∗(∗) →
H∗(∗), and this natural transformation is a natural isomorphism.

Remark. The Eilenberg–Steenrod theorem is one of two general organising princi-
ples for (co)homology theories. The other is sheaf cohomology: the idea that one
can use different resolutions of the same sheaf to compute its cohomology. This
leads to a proof that singular cohomology is isomorphic to Čech cohomology, and
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that the real cohomology H∗(M ; R) of a smooth manifold is isomorphic to its de
Rham cohomology H∗dR(M).

We will not give a complete proof of the theorem: for a start, we will restrict our
attention, for simplicity’s sake, to finite-dimensional CW complexes. We will prove
the existence of the natural isomorphism, but not its uniqueness. We will also not
prove that the natural transformations δn are uniquely determined.

Proof. We have already proved the heart of this theorem in showing that H∗(X) ∼=
Hcell
∗ (X), for our proof only used properties of singular homology derivable from

the axioms.
To flesh this out, it is more convenient to work with reduced homology theories.

Let’s put Ẽn(X) = En(X, {b}), where the basepoint b ∈ X is one of the 0-simplices.
Then Ẽn defines a ‘reduced homology theory’ on based CW complexes, satisfying
analogues of the axioms above. To state them, we need the notion of the reduced sus-
pension ΣX of X: ΣX = (X × [−1, 1])/ ∼, where (x, 1) ∼ (y, 1), (x,−1) ∼ (y,−1),
and (unlike the unreduced suspension) (b, s) ∼ (b, t), where b is the basepoint. It
is made a CW complex by thinking of it as the ‘smash product’

S1 ∧X = (S1 ×X)/(S1 ∨X)

(think this through). In general, the reduced suspension differs from the unreduced
suspension. However, one still has ΣSn ∼= Sn+1. A map f : X → Y preserving
basepoints induces Σf : ΣX → ΣY in a functorial manner.

The new axioms are as follows.
• DIMENSION: Ẽ∗(S0) = Z.
• EXACTNESS: if A is a CW subcomplex containing b then the sequence

Ẽ∗(A)→ Ẽ∗(X)→ Ẽ∗(X/A)

is exact.
• SUSPENSION: There is a natural (in X) isomorphism

Σ: Ẽ∗(X)→ Ẽ∗+1(ΣX).

• ADDITIVITY: The natural map
⊕

i Ẽ∗(Xi) → Ẽ∗(
∨
iXi) is an isomor-

phism. Here the Xi are based CW complexes, and
∨
iXi their wedge sum

along the basepoints.
Exercise 20.1: Show that if E∗ is a homology theory then Ẽ∗ is a reduced homology
theory.

Let CE∗ (X) be the cellular chain complex defined via Ẽ∗:

CE∗ (X) = Ẽ∗(Xn/Xn−1).

We can run our proof from two lectures ago to show that Ẽn(X) ∼= Hn(C̃E∗ (X)),
where C̃E∗ (X) is the reduced cellular chain complex CE∗ (X)/CE∗ (b). (This necessi-
tates some slight adjustments in degree 0; otherwise the argument is identical.) To
be precise, the argument shows that we can obtain an isomorphism

α : Ẽn(X)→ Hn(C̃E∗ (X))

as follows: x ∈ Ẽn(X) lifts to some x̂ ∈ Ẽn(Xn). We define α(x) as the image of x̂
in Ẽn(Xn/Xn−1).

The dimension and suspension axioms tell us that Ẽ∗(Sn) ∼= Z(n), and hence that
Ẽn(Xn/Xn−1) = Z{n−cells}. As before, the cellular differential may be identified



ALGEBRAIC TOPOLOGY I: FALL 2008 69

with a degree matrix, but at this point we hit a snag. The degree matrix is computed
using Ẽ∗ rather than ordinary homology. Do these degrees agree?

Let f : Sn → Sn be a map preserving a basepoint. It has a homology degree
and an Ẽ∗-degree, and we would like to prove that they are the same. This is easy
to check for S0, and quite easy also for S1, where we know that every map f is
homotopic rel basepoint to z 7→ zd for some d ∈ Z. We can try to prove it in
general by induction on n, using naturality of the suspension isomorphism, but this
will only work for maps f homotopic to Σg for some g : Sn−1 → Sn−1. Does this
exhaust all possible maps Sn → Sn? Yes. This can be seen as a special case of the
Hurewicz theorem, one of the basic principles of homotopy theory. Alternatively,
it can be proved using a little differential topology (see Milnor, Topology from the
differentiable viewpoint).

The upshot is that the cellular chain complexes as defined via Ẽ∗ and H̃∗ coincide.
We deduce an isomorphism

Ẽ∗(X)→ H̃∗(X).
One now checks that this isomorphism is natural with respect to cellular maps
(those that send k-skeleta to k-skeleta) and so, by cellular approximation, with
respect to arbitrary based maps. We have now succeeded in rebuilding Ẽ∗ (and
hence E∗) from the cellular homology of X.

We now recover E∗ from its reduced theory Ẽ∗. Indeed, it follows from excision
that the quotient map X → X/A induces an isomorphism E∗(X,A) ∼= Ẽ∗(X/A)
when A 6= ∅; and one has E∗(X) = Ẽ∗(X q ∗).

One can also recover the natural transformation δn, though this is trickier, and
I will omit it (see May chapters 14 and 8).

�
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IV. Product structures

21. Cohomology

A cochain complex over R is a sequence of R-modules and maps

· · · → Cp−1 dp−1

→ Cp
dp

→ Cp+1 → . . . , p ∈ Z,

such that dp ◦ dp−1 = 0 for all p. It’s just the same as a chain complex, except
that the indexing runs the other way. We use superscripts for cochain complexes,
subscripts for chain complexes. We write C∗ =

⊕
p C

p. The pth cohomology
module is then

Hp(C∗) = ker dp/ im dp−1,

and we put H∗(C∗) =
⊕
Hp(C∗).

If (D∗, ∂) is a chain complex then one obtains a cochain complex by dualisation,
putting Cp = HomR(Dp, R) and (dpf)(x) = f(∂p+1x).

Remark. It is not true that C∗ = HomR(D∗, R), unless Cp = 0 for |p| � 0: one has
HomR(D∗, R) =

∏
p C

p, which is usually bigger than
⊕

p C
p.

If X is a space, one defines the singular cochains S∗(X;R) by

Sp(X;R) = HomZ(Sp(X), R),

with the differentials dp defined by dualising ∂:

(dpc)(σ) = c(∂σ) =
∑
i

(−1)ic(σ ◦ δi).

One then puts Hp(X;R) = Hp(S∗(X;R)). Note that singular cochains, and hence
singular cohomology, are contravariantly functorial: a map f : X → Y induces
f∗ : H∗(Y ;R)→ H∗(X;R), and one has (f ◦ g)∗ = g∗ ◦ f∗.

Relative cohomology Hp(X,A;R) for a subspace i : A → X is defined as the
cohomology of ker(i∗ : S∗(X;R)→ S∗(A;R)).

All the familiar properties of homology (long exact sequences of the pair, homo-
topy invariance, excision, Mayer–Vietoris, etc.) have dual versions in cohomology,
with essentially identical proofs. Note that the connecting maps in long exact
sequences go up not down in degree.
Exercise 21.1: Formulate these properties of cohomology, and think through how you
would prove them.

Theorem 21.1 (Dual universal coefficients). If X is a space, and R any commuta-
tive unital ring, there are natural (in X), non-naturally split short exact sequences

0→ Ext(Hp−1(X), R)
j→ Hp(X;R)

q→ HomZ(Hp(X), R)→ 0.

In particular, there are non-canonical isomorphisms

Hn(X) ∼= Hom(Hn(X),Z)⊕Hn−1(X)tors.

where the Ators denotes the torsion subgroup of A.

This is a direct consequence of an algebraic theorem given below.
Exercise 21.2: Show that H1(X;R) ∼= HomZ(π1(X), R) for path connected X. De-
duce that H1(X) = H1(X; Z) is a torsion-free abelian group for X locally path con-
nected X.
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21.1. Ext. Fix a commutative ring R and an R-module P . We investigate the
effect on exact sequences of the functor Hom(·, P ) from R-modules to R-modules.
This problem is dual to the one we considered earlier involving tensor product,
because of the adjunction

Hom(M ⊗Q,P ) ∼= Hom(Q,Hom(M,P )).

The arguments closely parallel those in the proof of homology universal coefficients,
and we shall mostly leave the verifications to the reader to work through.

Lemma 21.2. Let 0 → M1
i→ M2

p→ M3 → 0 be a short exact sequence of R-
modules. Let P be another R-module. Then the induced sequence

0→Hom(M3, P )
p∗→ Hom(M2, P ) i∗→ Hom(M1, P )

is also exact. If the short exact sequence splits (for instance, if M3 is a free module)
then Hom(M2, P )→ Hom(M1, P ) is surjective.

In general, i∗ is not surjective but its cokernel is measured by ‘Ext’. We assume
R is a PID, so (as discussed in the context of homology universal coefficients) any
R-module M has a two-step free resolution

0→ F1
f1→ F0

f0→M → 0.

Applying Hom(·, P ) to this sequence, we obtain a complex

0→ Hom(M,P )
f∗0→ Hom(F0, P )

f∗1→ Hom(F1, P )→ 0

which is exact at Hom(M,P ) and at Hom(F0, P ). We prefer to truncate this to the
(non-exact) sequence

0→ Hom(F0, P )
f∗1→ Hom(F1, P )→ 0.

which we think of as a cochain complex. By the lemma, its cohomology at Hom(F0, P )
(i.e., ker f∗1 ) is naturally isomorphic to Hom(M,P ). We define Ext(M,P ) to be its
cohomology at Hom(F1, P ):

Ext(M,P ) = coker f∗1 .

We showed in our treatment of Tor that given two free resolutions (F∗
f0→ M)

and (G∗
g0→ M), there is a chain map α : F∗ → G∗, unique up to chain homotopy,

such that g0 ◦ α = f0. This shows that Ext(M,P ) is independent of the choice of
free resolution, up to canonical isomorphism.

Remark. Those who have studied Ext in other contexts should note that one can
compute Ext(M,P ) from a projective resolution of M or an injective resolution of
P . We have opted for a special case of the former.

Example 21.3. • When R is a field we may take F0 = M and F1 = 0. Thus
Ext(M,P ) = 0 for all P .

• If M is a free module over the PID R, we may take F0 = M and F1 = 0.
Hence Ext(M,P ) = 0 for all P .
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• The R-module M = R/(x) has free resolution 0 → R
x→ R → R/(x) → 0.

Thus

Ext(R/(x), P ) = coker(x∗ : Hom(R,P )→ Hom(R,P ))

= coker(x : P → P )

= P/xP.

For instance, Ext(R/(x), R) = R/(x). Since Ext commutes with direct sum
(on either factor), one deduces that for a finitely-generated R-module M
one has Ext(M,R) = Mtors, the torsion submodule of M .

Theorem 21.4 (Dual universal coefficients). Let C∗ be a chain complex of free R-
modules over a PID R. Then, for any R-module P , one has short exact sequences

0→ Ext(Hp−1(C∗), P )
j→ Hp(Hom(C∗, P ))

q→ Hom(Hp(C∗), P )→ 0.

These sequences split, but there is no preferred splitting. In particular, taking P =
R, we get short exact sequences

0→ Hp−1(C∗)tors
j→ Hp(C∨∗ )

q→ Hp(C∗)∨ → 0,

where for any R-module M , M∨ denotes Hom(M,R).

Proof. The proof is similar to that of the universal coefficient theorem for tensor
products. We take for our free resolution of the homology groups

0→ Bp
ip→ Zp → Hp(C∗)→ 0

(Bp and Zp are free because Bp ⊂ Zp ⊂ Cp). Thus we have

Ext(Hp−1(C∗), R) = coker[i∗p−1 : Hom(Zp−1, R)→ Hom(Bp−1, R)].

As in the tensor product argument, we have short exact sequences

0→ Zp → Cp
∂p→ Bp−1 → 0

which split and therefore induce short exact sequences

0→ Hom(Bp−1, R) dp

→ Hom(Cp, R)→ Hom(Zp, R)→ 0.

These constitute a short exact sequence of cochain complexes, and the resulting
long exact sequence on cohomology reads(!)

Hom(Zp−1, R)
i∗p−1→ Hom(Bp−1, R) dp

→ Hp(Hom(C∗, R))→ Hom(Zp, R)
i∗p→ Hom(Bp, R).

We deduce from this short exact sequences

0→ coker(i∗p−1)→ Hp(Hom(C∗, R))→ ker(i∗p)→ 0.

But ker i∗p = Hom(Hp(C∗), R) and coker(i∗p−1) = Ext(Hp−1(C∗), R). These short
exact sequences split because Hom(Hp(C∗), R) is a free R-module. �

Remark. The universal coefficients theorems show thatH∗(X) determinesH∗(X;R)
and H∗(X;R) up to isomorphism, but not functorially. It is arguably better to
think of the singular chains as defining functors Sn : hTop→ hCh, where the cat-
egory on the right is the category of chain complexes and chain homotopy classes
of chain maps. These functors can then be followed by algebraic functors ·⊗R and
Hom(·, R).
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Exercise 21.3: Work over Z and fix distinct primes p and q. Compute (i) Ext(Z,Z/pn);
(ii) Ext(Z/pn,Z); (iii) Ext(Z/pn,Z/qm); (iv) Ext(Z/pn,Z/pm).

Exercise 21.4: Working over Z, compute Ext(A,Q/Z) for an arbitrary finitely generated
abelian group A.

Exercise 21.5: For any simply connected space X, one has H2(X) ∼= Hom(H2(X),Z).

Exercise 21.6: Verify a case of the theorem by computing H∗(RP 2; Z) in two ways.
Do the same for H∗(RP 2; Z/2).

Exercise 21.7: What is the relation between H∗(X;R) and H∗(X)?
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22. Product structures, formally

We explain the formal structure of the cup and cap products and state the
Poincaré duality theorem.

Homology and cohomology are much more powerful invariants when one takes
account of their multiplicative structures. The cohomology H∗(X) is a graded ring
under the cup product. Homology H∗(X) is not a ring, but it is a graded module
over the graded ring H∗(X). This is expressed by the cap product.

22.1. The evaluation pairing. The most basic product structure is the ‘evalua-
tion’ pairing

Hp(X)×Hp(X), (c, h) 7→ 〈c, h〉.
In singular theory, this is induced by the evaluation

Sp(X)× Sp(X) = Hom(Sp(X),Z)× Sp(X)→ Z;

similarly in cellular theory. One extends the evaluation pairing to a linear map

H∗(X)⊗H∗(X)→ Z
which is zero on Hp ⊗Hq when p 6= q.

Remark. It might be interesting to axiomatise this pairing in an arbitrary Eilenberg–
Steenrod theory. Over a field k, Hn(·; k) is dual to Hn(·; k) in a functorial manner.
Over Z this is not so, but there are specialisation maps Hn(·) → Hn(·; Z/p) and
Hn(·)→ Hn(·; Z/p), so one could ask that an evaluation pairing should be naural,
and should specialise to the dual pairing between mod p homology and cohomology
for all primes p.

22.2. The cup product. The cup product is an associative bilinear product

H∗(X)×H∗(X)→ H∗(X), (a, b) 7→ a ^ b.

Its fundamental properties are as follows:
• One has Hp(X) ^ Hq(X) ⊂ Hp+q(X). Thus ^ makes H∗(X) into a

graded ring.
• The ring has a unit element 1 ∈ H0(X): it is characterised by 〈1, h〉 = 1

when h ∈ H0(X) is the class of a point.
• The cup product is commutative in the graded sense:

a ^ b = (−1)|a||b|b ^ a.

• The cup product is functorial: if f : X → Y is a map then

f∗(a ^ b) = f∗a ^ f∗b.

hence f∗ is a homomorphism of unital graded rings. In particular, the
cohomology ring is an invariant of homotopy type.

• The natural isomorphism H∗(
∐
i∈I Xi) ∼=

∏
i∈I H

∗(Xi) is an isomorphism
of rings.

So, for example, the ‘pinching’ map
∐
i∈I Xi →

∨
i∈I Xi induces a ring homomor-

phism
Hn(

∨
i∈I

Xi)→
∏
i∈I

Hn(Xi),

which is an isomorphism in degrees n > 0. Since this isomorphism is induced by a
map between the spaces, it respects the cup product.
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22.3. The cap product. The cap product is a bilinear product

H∗(X)×H∗(X)→ H∗(X), (c, h) 7→ c _ h.

Its fundamental properties are as follows:
• One has (a ^ b) _ h = a _ (b _ h).
• One has 1 _ h = h.
• One has Hp(X) _ Hn(X) ⊂ Hn−p(X). Thus _ makes H∗(X) into a

graded unital module (with suitable grading conventions...) over the ring
H∗(X).
• One has

〈a ^ b, h〉 = 〈a, b _ h〉.
• If f : X → Y is a map then

f∗(f∗c _ h) = c _ f∗h

for h ∈ H∗(X) and c ∈ H∗(Y ). This shows that homology, as a graded
module over cohomology, is an invariant of homotopy type.
• The natural isomorphism H∗(

∐
i∈I Xi) ∼=

⊕
i∈I H∗(Xi) is an isomorphism

of modules.
I don’t know whether the axioms for the cap and cup products that I have

listed, when considered together, characterise both of them uniquely. However, the
relation between cup, cap and evaluation products does force them to be non-trivial
(e.g. one can’t define the cup product of positive-degree cohomology classes to be
identically zero).

Most interesting computations of cohomology rings and homology modules in-
voke the Poincaré duality theorem.

Theorem 22.1 (Poincaré duality). Suppose M is a compact, connected, oriented
n-manifold with fundamental class [M ] ∈ Hn(M). Then the ‘duality map’

D : Hp(M)→ Hn−p(M), D(c) = c _ [M ],

is an isomorphism for all p ∈ Z.

The proof of this theorem mostly uses the naturality properties of cap and cup
products, though at one point it becomes necessary to look more closely at the
definition.

In practice, one works with a corollary. Next time we’ll use this to compute the
cohomology ring of projective space.

Corollary 22.2 (Poincaré duality: cup product version). Let M be a compact,
connected, oriented n-manifold, and [M ] ∈ Hn(M) the fundamental class. Then
for any p ∈ Z the Poincaré pairing

Hp(M)/T p ×Hn−p(M)/Tn−p → Z, (a, b) 7→ 〈a ^ b, [M ]〉,
is non-degenerate. Here T k ⊂ Hk(M) denotes the submodule of torsion classes, so
Hk(M)/T k is torsion-free and hence free.

Remark. Note that the ‘hence’ here uses a fact that we have not proved, that
the (co)homology of a compact manifold is finitely generated (a finitely generated
torsion-free abelian group is free). In fact, any compact manifold is homotopy-
equivalent to a finite CW complex. In the smooth case, this follows easily from
Morse theory; in general, it is a hard theorem.
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Remark. Non-degeneracy means that the adjoint map

Hp(M)/T p → Hom(Hn−p(M)/Tn−p,Z), a 7→ (b 7→ 〈a ^ b, [M ]〉)
is an isomorphism. If one fixes bases for the free abelian groups Hk(M)/T k, it is
the assertion that the matrix of the pairing is square and its determinant is ±1.

Proof of the corollary. Recall a corollary of universal coefficients (which used finite
generation): Hp(M) = Hom(Hp(M),Z) ⊕ Hp−1(M)tors. Thus Hp(M ;R)/T p ∼=
Hom(Hp(M),Z). The adjoint map α : Hp(M) → Hom(Hn−p(M),Z) sends a to
the map b 7→ 〈a ^ b, [M ]〉 = ±〈b ^ a, [M ]〉 = ±〈b, a _ [M ]〉. If b is non-zero (mod
torsion) then it evaluates non-trivially on some homology class, and by the Poincaré
duality theorem, we may take that class to be of form b _ [M ]. Hence kerα = T p.
And α is also surjective, because given any homomorphism f ∈ Hn−p(M)→ Z, we
can represent it as evaluation on some homology class h = D(c), and then f = α(c).

�
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23. Formal computations in cohomology

We show that Poincaré duality leads to computations of cup product structures.
We explain an algebraic application.

Last time, we noted a corollary of Poincaré duality, that on a compact oriented
manifold, the cup-product pairing on cohomology mod torsion is non-degenerate.
We now apply this to complex projective space. Take a polynomial ring Z[u], and
make it a graded ring by declaring u to have degree 2. Truncate it to the graded
ring Z[u]/(un+1). As a graded abelian group, we have

H∗(CPn) ∼= Z[u]/(un+1).

Theorem 23.1. There is an isomorphism of graded rings,

H∗(CPn) ∼= Z[u]/(un+1), deg u = 2.

Proof. Induction on n. The space CP 0 is a point, and the result is trivially true
in this case. It is also trivially true when n = 1, and we will start the induction
there. If n > 1, observe that we have an inclusion i : CPn−1 → CPn, induced
by a linear inclusion Cn+1 → Cn+2. By induction, H∗(CPn−1) ∼= Z[t]/tn where
deg t = 2. Now, i∗ is additively an isomorphism up to degree 2(n − 1). Let
u ∈ H2(CPn) be defined by i∗u = t. Since tn generates H2(n−1)(CPn−1), un

generates H2(n−1)(CPn). By Poincaré duality, the pairing

H2(n−1)(CPn)×H2(CPn)→ Z

is non-degenerate over Z. It follows that the generators of the two groups pair to
give ±1, i.e.,

〈un−1 ∪ u, [CPn]〉 = 〈un, [CPn]〉 = ±1.

Hence un generates H2n(CPn), and the result follows. �

Exercise 23.1: Specify a suitable cohomology class u. Describe uk for all k. (Part of
the exercise is to work out what format the answer should sensibly take.)

Remark. A precisely similar argument, using the mod 2 version of Poincaré duality,
shows that

H∗(RPn; Z/2) ∼= (Z/2)[t]/tn+1, deg t = 1.

The result for projective spaces shows that the cup product makes cohomology
a more powerful invariant.

Example 23.2. CP 2 is not homotopy equivalent to S2 ∨ S4. Indeed, H∗(CP 2)
contains a degree 2 class u such that u ^ u is non-tivial, whereas the cup-square
of a degree 2 class in H∗(S2 ∨ S4) is always zero.

Example 23.3. Any homeomorphism h : CP 2 → CP 2 preserves orientation. For
it suffices to show that h∗[CP 2] = [CP 2] (where [CP 2] is the fundamental class),
i.e., that h has degree 1 rather than −1. But h∗u = ±u, since these are the two
generators for H2. So h∗(u ^ u) = h∗u ^ h∗u = u ^ u, hence h∗ is the identity
on H4. Hence the dual map h∗ on H4 is also the identity.

The argument also extends to CP 2n, but not to CP 2n+1 (indeed, it is false for
CP 1).

However, it still has limitations:
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Example 23.4. S3∨S5 and S(CP 2) have isomorphic cohomology rings: additively,
both are Z(0)⊕Z(3)⊕Z(5) where the subscripts denote degree. The product of two
classes of positive degree has to be zero, for reasons of degree.

Exercise 23.2: (a) Suppose that X and Y are compact, connected, orientable n-
manifolds. Describe the cohomology ring of their connected sum X#Y . (b) Prove

that CP 2#CP 2 and CP 2#CP 2 are not homotopy-equivalent. Here CP 2 is the com-
plex projective plane with one orientation, and CP 2 the same space with the opposite
orientation.

23.1. The Künneth formula. There is one other general result which is very
useful in computing cup products. To state it I need to work with cohomology
with coefficients in a ring k. Cohomology with coefficients in k also carries a cup
product, which is linear over k and so makes H∗(X; k) a k-algebra.

The result is the Künneth formula. In general, if A and B are graded k-algebras
then their tensor product A ⊗ B is also a graded k-algebra, with ith graded part⊕

j Aj ⊗Bi−j , and product given on homogeneous monomials by

(x⊗ y) · (x′ ⊗ y′) = (−1)|y||x
′|(x ^ x′)⊗ (y ^ y′).

Theorem 23.5 (Künneth formula). Let X and Y be spaces. Define the ‘cross
product’ map

H∗(X; k)⊗k H∗(Y ; k)→ H∗(X × Y ; k), (x, y) 7→ x× y := pr∗Xx ^ pr∗Y y,

where prX and prY the two projection maps from X×Y . One checks that it is a map
of graded k-algebras. When X and Y are CW complexes, and H∗(Y ) is a finitely
generated free k-module (e.g. when k is a field), this map is an isomorphism.

Without the assumption that H∗(Y ) is a free module, there is still a Künneth
theorem; it says that the cross product map is injective, and expresses its cokernel
using Tor.

Example 23.6.
H∗(CPn × CPm) ∼= Z[t, u]/(tn+1, um+1)

with |t| = |u| = 2, and

H∗(RPn × RPm; Z/2) ∼= (Z/2)[x, y]/(xn+1, ym+1)

with |x| = |y| = 1 (the signs become irrelevant when k = Z/2).

23.2. An algebraic application of cup product. A division algebra over a field
F is an F -vector space A equipped with a bilinear map m : A×A→ A, such that
for each x ∈ A \ {0} the linear maps m(x, ·) : A → A and m(·, x) : A → A are
isomorphisms.

Theorem 23.7 (Hopf). The dimension of a finite-dimensional division algebra
over R is a power of 2.

Proof. Let A be an n-dimensional real division algebra, with multiplication

m : A×A→ A.

Bilinearity of m, and the fact that m(x, y) = 0 implies x = 0 or y = 0, tell us that
there is an induced map

M = Pm : PA× PA→ PA.
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Let k be the field Z/2. On mod 2 cohomology, M gives us a map

M∗ : H∗(PA× PA; k)→ H∗(PA; k).

We have H∗(PA; k) = k[x]/(xn) where deg x = 1, and by the Künneth formula,
H∗(PA× PA; Z/2) = k[y, z]/(yn, zn). Thus we have a map of graded rings

M∗ : k[x]/(xn)→ k[y, z]/(yn, zn).

We claim that M∗(x) = y + z. Indeed, we know that for some (or indeed, any)
µ ∈ PA, the composite PA → PA × PA → PA, λ 7→ (λ, µ) 7→ M(λ, µ) is a
homeomorphism, hence that M∗x = y mod z, and similarly that M∗x = z mod y.
This proves the claim.

Hence (y + z)n ∈ k[y, z] lies in the ideal generated by yn and zn. This implies
that the coefficient of ykzn−j for 1 ≤ j < n, namely

(
n
j

)
, must be zero in k, and

hence that the equation
(1 + t)n = 1 + tn

holds in k[t]. Now, (1 + t)2 = 1 + t2 in k[t]. Thus (1 + t)4 = (1 + t2)2 = 1 + t4, and
more generally, (1 + t)2m

= (1 + t2
m

). But if we write n in binary form, putting

n = 2m1 + 2m2 + · · ·+ 2ma , m1 < m2 < · · · < ma,

then (1 + t)n =
∏

(1 + t)2mi =
∏

(1 + t2
mi ). But this expression is 1 + t2

m1 plus
higher order terms. So the equation (1 + t)n = 1 + tn holds only if a = 1, i.e. n is
a power of 2. �

Remark. The proof applies to a slightly more general kind of algebra: we can assume
that there exist some x and y in A so that m(x, ·) and m(·, y) are isomorphisms.

Exercise 23.3: Prove that the cohomology groups of a compact, simply connected,
oriented 4-manifold M are completely determined by the second Betti number

b2(M) = dimQ H
2(M ; Q).

Prove that the cohomology ring is determined by the cup-product pairing H2×H2 → Z.

Exercise 23.4: A special case of the Lefschetz fixed point theorem states that if X is a
finite CW complex, and g : X → X a map without fixed points, then∑

p≥0

(−1)p trHp(g) = 0.

Here Hp(g) is the induced map on H∗(X; Q). What restrictions does this entail for
groups acting freely on CPn?
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24. Cup products defined

We define the cup product of cochains.

24.1. The basic mechanism. The definition of cup products combines two ideas:
(1) There is a chain map

D∗ : C∗(X ×X)→ C∗(X)

induced by the diagonal map D : X → X ×X, x 7→ (x, x).
(2) There is a natural chain map (actually, a quasi-isomorphism)

ζ : C∗(X)⊗ C∗(X)→ C∗(X ×X).

Here by C∗ denotes cochains, but they could be singular or cellular. Given these
elements, one defines a chain map

^ : Cp(X)⊗ Cq(X)→ Cp+q(X), a ^ b = D# ◦ ζ(a⊗ b).

24.2. Cup products in cellular cohomology. Suppose, for instance, we work
with cellular cohomology.

Proposition 24.1. Suppose X has a CW decomposition with p-cells eαp , and Y

a CW decomposition with q-cell fβq . Then X × Y has a cell decomposition with
(p+ q)-cells eαp × eβq . The cellular chain complex of the product is given by

Ccell∗ (X × Y ) = Ccell∗ (X)⊗ Ccell∗ (Y ),

with the cellular boundary dX×Y (e⊗ f) = dXe⊗ f + (−1)deg ee⊗ dY f .

I won’t give the proof (see Hatcher p. 268 or May p.99), but the basic point is
that the product of a p-cell and a q-cell is a p+ q-cell.

Let’s apply this to X ×X. It has a cell decomposition with cells eαp ⊗ eβq , and
one has an isomorphism of chain complexes

Ccell∗ (X ×X)→ Ccell∗ (X)⊗ Ccell∗ (X),

where the differential on the right-hand side is given on the summand Ccellp (X) ⊗
Ccellq (X) by

dp ⊗ id + (−1)pid⊗ dq.
The cellular cochain complex C∗cell(X) is defined as the dual cochain complex to
(C∗(X), d). Thus by duality one has an isomorphism of cochain complexes

ζ : C∗cell(X)⊗ C∗cell(X)→ C∗cell(X ×X).

Now, D is not a cellular map, but we have the cellular approximation theorem:

Theorem 24.2. Every map between CW complexes is homotopic to a cellular map,
i.e., one which maps the k-skeleton to the k-skeleton for all k.

So D is homotopic to a cellular map D′ : X → X ×X.

Example 24.3. Make S1 a CW complex with exactly two cells. Then one can see
from a picture how the diagonal S1 → S1 × S1 is homotopic to a cellular map.

Exercise 24.1: Find a cellular approximation to the diagonal Sn → Sn × Sn.



ALGEBRAIC TOPOLOGY I: FALL 2008 81

Define the cup product on the cellular cochain complex by

a ^ b = D′# ◦ ζ(a⊗ b).

This is a perfectly reasonable (and correct) definition; for instance, it satisfies

d(a ^ b) = da ^ b+ (−1)|a|a ^ db.

Its only deficiency is that it is non-explicit, because of the cellular approximation
to D.

In some cases, one can write down an explicit cellular approximation and use it
compute the cup product:

Example 24.4. Use a cellular approximation to the diagonal S1 → S1 × S1 to
construct another such approximation S1×S1 → S1×S1×S1×S1. Hence compute
the cup-product structure of H∗(S1 × S1).

24.3. Cup products in singular cohomology. We have a canonically-defined
chain map D# : S∗(X×X)→ S∗X. Explicitly, for c ∈ Sp(X×X) and τ ∈ Σp(X),
one has

〈D#(c), τ〉 = 〈c, τ × τ〉.
We want to define

a ^ b = D#ζ(a⊗ b).
We need to set up a suitable chain map ζ, which should be natural in X. There is
an explicit formula for such a ζ, called the Alexander–Whitney map:

Proposition 24.5 (Alexander–Whitney). Define a linear map

ζ = ζX : Sp(X)⊗ Sq(X)→ Sp+q(X ×X)

by
〈ζ(a⊗ b), σ〉 = 〈a, (pr1 ◦ σ)|[v0,...,vp])〉〈b, (pr2 ◦ σ)|[vp,...,vp+q ])〉

for a ∈ Sp(X), b ∈ Sq(X), and σ ∈ Σp+q(X ×X). Then ζ is a chain map. It is
natural in X in that

(f × f)∗ ◦ ζY = ζX ◦ f∗

for f : X → Y . One has
ζ(1X ⊗ 1X) = 1X×X ,

where 1X ∈ S0(X) evaluates as 1 on any simplex (similarly 1X×X).

Exercise 24.2: Check the proposition.

We can use the Alexander–Whitney map to define the cup product as D# ◦ ζ:

Definition 24.6. The cup product of cochains a and b is defined by

〈a ^ b, σ〉 = 〈a, σ|[v0,...,vp])〉〈b, σ|[vp,...,vp+q ])〉.

Remark. It is a theorem of Eilenberg–Zilber that ζ is a chain-homotopy equivalence.
Moreover, any other chain map ζ ′ that is natural in X and satisfies ζ ′(1X ⊗ 1X) =
1X×X is naturally chain-homotopic to ζ. Thus one could define cup product via ζ ′,
but on cohomology the definition would give the same product.
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Lemma 24.7. One has

d(a ^ b) = da ^ b+ (−1)|a|a ^ db;

a ^ (b ^ c) = (a ^ b) ^ c;
a ^ 1X = a = 1X ^ a.

Thus S∗(X) is a differential graded algebra (DGA). For a map f , one has f∗(a ^
b) = f∗a ^ f∗b, so this DGA is natural in X.

Thus ^ descends to give a unital ring structure on cohomology H∗(X) bilinear
product on cohomology, natural in X.
Exercise 24.3: Use singular cohomology to compute H∗(S1 × S1) as a ring. [You may
find it helpful to think of S1 × S1 as a ∆-complex.]

The cap product is defined by a similar procedure:

Sp(X)⊗Sn(X)
1⊗D#→ Sp(X)⊗Sn(X×X))

1⊗ζ∨→ Sp(X)⊗[S∗(X)⊗S∗(X)]n → Sn−p(X).

Here the last map is
c⊗ y ⊗ z 7→ 〈c, y〉z.

Exercise 24.4: Check that the cap product has the properties I claimed two lectures
back.
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25. Non-commutativity

We sketch a definition of the simplest interesting Steenrod operation,

Sqn−1 : Hn(X; Z/2)→ H2n−1(X; Z/2)

and use it to distinguish two homotopy types.
In the de Rham cohomology theory of smooth manifolds M , which is naturally

isomorphic to M 7→ H∗(M ; R), the wedge product of differential forms is commuta-
tive (in the graded sense). However, the cup product of cochains is not commuative.

Lemma 25.1. The cochain-level cup product of singular cochains is not commuta-
tive. However, there exist natural maps κ : Sp(X)⊗Sq(X)→ Sp+q−1(X) satisfying
the chain homotopy identity

a ^ b− (−1)|a||b|b ^ a = dκ(a⊗ b) + κ(da⊗ b+ (−1)|a|a⊗ db).
Hence the cohomology cup product is commutative (in the graded sense).

I will not prove this lemma.
Suppose we work with cochains over Z/2. Construct the natural map κ as in

the lemma. For [c] ∈ Hn(X; Z/2), define Sqn([c]) = [c ^ c] ∈ H2n(X; Z/2), and

Sqn−1([c]) = [κ(c⊗ c)] ∈ H2n−1(X; Z/2).

This makes sense because the identity satisfied by κ implies that, working mod 2,
we have that dκ(c⊗c) = 0 when dc = 0, and also that κ((c+db)⊗(c+db))−κ(c⊗c)
is exact.

It is eminently plausible—and moreover true—that if (X;A,B) is an excisive
triad then the Mayer–Vietoris connecting maps δp : Hp(A∩B)→ Hp+1(X) satisfy

Sqn−1(δnc) = δ2n−1(Sqn−1c), c ∈ Hn−1(A ∩B).

(Here the Sqn−1 on the right is the cup-square, that on the left the one defined
using κ.) It follows that one has (for n > 0)

Sqn−1(Σc) = Σ(Sqn−1c) = Σ(c ^ c), c ∈ Hn−1(X),

where Σ: H̃∗(X)→ H∗+1(SX) is the suspension isomorphism.

Example 25.2. For instance, if 0 6= u ∈ H2(CP 2; Z/2) then in H5(SCP 2; Z/2)
one has

Sq2(Σu) = Σ(u2) 6= 0.
So Sq2 is non-zero. On the other hand, in S5∨S3, which has the same cohomology
ring as S(CP 2), one has Sq2(H3) = 0. So, once the operation Sq2 : H3 → H5 has
been put on a sound footing, we will have a proof that S5 ∨ S3 6' S(CP 2).

We have omitted several details in this discussion, but the basic points are these.
• There is no commutative cochain-level cup product on mod 2 cochains

which is natural in X.
• This non-commutativity has a manifestation in an operation on mod 2

cohomology which is sometimes non-trivial. This can be used to distinguish
homotopy types (such as S5 ∨ S3 versus S(CP 2)).



84 TIM PERUTZ

26. Poincaré duality

We provide most but not all of the details of the proof of Poincaré duality.
Poincaré duality is primarily a statement about compact manifolds. Let us recall

the statement in that case.

Theorem 26.1 (Poincaré duality: compact case). Suppose M is a compact, con-
nected, R-oriented n-manifold with fundamental class [M ] ∈ Hn(M ;R). Then the
‘duality map’

D : Hp(M ;R)→ Hn−p(M ;R), D(c) = c _ [M ],

is an isomorphism for all p ∈ Z.

We shall prove the Poincaré duality theorem using Mayer–Vietoris sequences,
starting from simple cases and gradually expanding the generality. However, most
of the manifolds one encounter along the way are non-compact, and it is therefore
useful to have a formulation valid in the non-compact case. This involves the
compactly supported cohomology and relative cap products.

The compactly supported cohomology H∗c (M ;R) is is the cohomology of a com-
plex built from singular cochains c for which there is some compact subset K so
that c annihilates all chains in X \K.1 More precisely, we define

Hp
c (M ;R) = lim−→

K

Hp(X,X \K;R)

where the direct limit is over compact subsets K ⊂ X. To explain this, note that
the compact subsets of X form a direct system under inclusion. This means that
one has inclusion maps i : K1 → K2, and the composite of inclusion maps is again
an inclusion map. The identity map on X is then a map of pairs

(X,X \K2)→ (X,X \K1),

and hence induces a homomorphism

Hp(X,X \K2;R)→ Hp(X,X \K1;R).

In this way, the modules Hp(X,X \K) become a direct system as K ranges over
compact subsets. We defined Hp

c (M ;R) as the direct limit of this system. Thus
one has a canonical map

Hp(X,X \K;R)→ Hp
c (X;R)

for each compact K, and these commute with the maps in the inverse system.
Indeed, Hp

c (X;R) is universal with respect to this property.
In practice, one computes Hp

c (X) as the direct limit of Hp(X,X \ K) as K
ranges over some compact exhaustion, i.e., a family of compact subspaces Ki such
that every compact subspace is contained in some Ki. This is valid by abstract
nonsense about cofinal families.

Example 26.2. Let us compute Hp
c (Rn). A compact exhaustion is given by the

discs Dn(m) centred at 0 and of radius m = 1, 2, . . . . One has H∗(Rn,Rn \
Dn(m)) ∼= Z(n). The inclusion of D(m) in D(m + 1) obviously induces an iso-
morphism on the relative cohomology groups. Hence H∗c (Rn) ∼= Z(n).

1If you know about de Rham theory, you should think of differential forms with compact
support.
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Remark. Taking direct limits of (co)chain complexes is an exact functor, i.e. it
commutes with passing to (co)homology. This is not true of inverse limits; the
failure of exactness is measured by the derived functor lim←−

1 of the inverse limit.

The cap product _ : Hp(X)×Hq(X) → Hq−p(X) generalizes to a relative cap
product

Hp(X,A)×Hq(X,A)→ Hq−p(X),
defined at (co)chain level by the same formula as the original cap product. Indeed,
one has ∂(φ _ a) = dφ _ a ± φ _ ∂c. If φ represents a cocycle rel A, and a a
cycle rel A, then both terms vanish. When p = q, the cap product is essentially
just the evaluation pairing. More precisely,

〈1, φ _ a〉 = 〈φ, a〉.

Theorem 26.3 (Poincaré duality: general case). If M is an R-oriented n-manifold
then the duality map

D : Hp
c (M ;R)→ Hn−p(M ;R),

is an isomorphism. Here D is defined as the direct limit of the maps

DK : Hp(M,M \K;R)→ Hn−p(M ;R), c 7→ c _ [MK ],

where [MK ] ∈ Hn(M,M \K) is the fundamental class of M relative to K, and _
the relative cap product.

In the proof we shall need the observation that the inclusion i : U → M of
an open subspace U induces a covariant homomorphism i∗∗ : Hp

c (U) → Hp
c (M).

Indeed, if K ⊂ U with K compact then excision gives an isomorphism

Hp(U,U \K) ∼= Hp(M,M \K),

and these isomorphisms commute with the maps in the direct system. We define
i∗∗ as the composite

Hp
c (U) = lim−→

K⊂U
Hp(U,U \K) ∼= lim−→

K⊂U
Hp(M,M \K)→ Hp

c (M).

Proof of the theorem. We drop the coefficients R from the notation. We shall prove
that D : Hp

c (U) → Hn−p(U) is an isomorphism for each open subset D ⊂ M
(including, eventually, M itself).

Step 1. The result holds when U = Rn.
Indeed, we saw above that H∗c (Rn) ∼= R(n)

∼= Hn−∗(Rn). For any compact subset
K, the cap product of a generator for Hn(Rn,Rn \ K) by the fundamental class
[RnK ] ∈ Hn(Rn,Rn \K) is (up to a sign) the point class in H0(Rn), because of the
relation between relative cap product and the evaluation pairing. Passing to the
direct limit, we find that D is an isomorphism in this case.

Step 2: If the result holds for U , V and U ∩ V then it holds for U ∪ V .
I claim that there is a covariant Mayer–Vietoris sequence in compactly supported

cohomology, and that one has a commutative diagram with exact rows of which
one portion reads

−−−−→ Hp
c (U)⊕Hp

c (V ) −−−−→ Hp
c (U ∪ V ) −−−−→ Hp+1

c (U ∩ V ) −−−−→

D

y D

y D

y
−−−−→ Hn−p(U)⊕Hn−p(V ) −−−−→ Hn−p(U ∪ V ) −−−−→ Hn−p−1(U ∩ V ) −−−−→
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Once this is verified, the 5-lemma assures us that D : Hp
c (U ∪V )→ Hn−p(U ∪V ) is

an isomorphism. The proof of this claim involves locality for chains (unsurprising
since that underlies Mayer–Vietoris) and a good deal of checking, for which I refer
to Hatcher.

Step 3: If the result holds for each Ui in a nested sequence U1 ⊂ U2 ⊂ U3 ⊂ of
open subspaces, then it holds for V =

⋃
Ui.

Any compact subset K ⊂ V is contained in some Ui. The algebraic properties
of direct limits give

Hp
c (V ) = lim−→

i

lim−→
K⊂Ui

Hp(Ui, Ui \K) = lim−→
i

Hp
c (Ui).

But
Hn−p(V ) = Hn−p(

⋃
Ui) = lim−→

i

Hn−p(Ui),

because the singular chain complex of an expanding union is the direct limit of
the singular chain complexes, and taking homology commutes with direct limits.
Now D : Hp

c (Ui) → Hn−p(Ui) is an isomorphism, and it commutes with the maps
induced by inclusion of Ui in Ui+1; hence D = lim−→i

(D : Hp
c (V )→ Hn−p(M)) is an

isomorphism.
Step 4: The result holds for open subsets of Rn.
Every open set U ⊂ Rn is the union of a countable set of open balls. Hence U

is the union of a nested family U1 ⊂ U2 ⊂ U3 ⊂ . . . , where U1 is an open ball, and
Ui+1 is the union of Ui and a convex open set C homeomorphic to Rn. Note that
C ∩ Ui is convex, open, and has compact closure, and hence is homeomorphic to a
ball. Thus the result holds for Ui+1 by induction and steps 1 and 2.

Step 5: The result holds for M .
By Steps 1 and 4, and Zorn’s lemma, there is a non-empty, maximal open set O

for which the result holds. If this weren’t all of M , we could take the union of O
and a coordinate neighbourhood U ∼= Rn, disjoint from O; the result would then
hold for O ∪ U by steps 1 and 2. This contradicts maximality of O. �

Remark. There is an almost trivial proof of duality for compact smooth manifolds
M in the context of Morse theory. The cellular chain complex can be understood
in terms of critical points and gradient flows for a Morse function f . Replacing f
by −f does not change the homology (which is just H∗(M)) but it has the effect of
dualizing the chain complex and changing degree ∗ to degree n − ∗. Thus H∗(M)
is isomorphic to the cellular cohomology of M in degree n− ∗.

Exercise 26.1: Let M be a compact, connected, oriented 3-manifold. Determine the
graded ring H∗(M) when (i) π1(M) is finite; (ii) H1(M) ∼= Z; (iii) H1(M) ∼= Z2.
Exhibit two such 3-manifolds with non-isomorphic cohomology rings, both of which
have H1

∼= Z3.

Exercise 26.2: Show that the Euler characteristic of a compact, orientable, odd-dimensional
manifold is zero.

Exercise 26.3: For which even dimensions 2n is it true that the Euler characteristic of
a compact, connected, orientable 2n-manifold is necessarily even?

Exercise 26.4: Show that for every map f : S2n → CPn, the induced map f̃∗ on
reduced homology is zero.


