Abstract Algebra Test Review 1

Niraj, Arrita, and Kellan

1. External Direct Products

- Definitions and properties (order of an element, know when is $G \oplus H$ cyclic)
- Be able to view U(n) as an external direct product

2. Normal Subgroups and Factor Groups

- Normal subgroups (definition, normal subgroup test)
- Factor groups (definition, G/Z theorem, $G/Z(G) \approx Inn(G)$ theorem, Cauchy's theorem for Abelian groups)
- Internal direct products (definitions, IDP \approx EDP, groups of order p^2)

3. Group Homomorphisms

• Definition and properties (properties of elements/subgroups under homomorphism, $\ker \phi \triangleleft G$, 1st isomorphism theorem and corollary, normal subgroups are kernels)

4. Fundamental Theorem of Finite Abelian Groups

- Every finite Abelian group is a direct prod of cyclic groups of prime-power order. Moreover, the number of terms in the product and the orders of the cyclic groups are uniquely determined by the group (page 226).
- Be able to find all Abelian groups up to isomorphism

5. Introduction to Rings

- Definition and properties of a ring, subring test
- Rules of multiplication

6. Integral Domains

- Definitions: zero-divisor, ID, fields
- Relationship between IDs and fields
- Characteristic of a ring (rings with unity and ID)

Open-ended questions:

- 1. Prove/disprove \mathbb{Q}^* under multiplication isomorphic to \mathbb{R}^* under multiplication.
- 2. Prove/disprove $Inn(G) \triangleleft Aut(G)$.
- 3. Prove/disprove that normal groups are closed under intersection.
- 4. Suppose that $\phi: \mathbb{Z}_8 \to \mathbb{Z}_{20}$ is a group homomorphism with $\phi(3) = 15$.
 - Determine $\phi(x)$.
 - Determine the image and kernel of ϕ
 - Determine $\phi^{-1}(5)$.
- 5. Prove that the center of a ring is a subring.
- 6. Let R be a noncommutative ring and let Z(R) be the center of R. Prove that the additive group of R/Z(R) is not cyclic.
- 7. Find all the Abelian groups of order 200, up to isomorphism.

True, sometimes true, false questions:

- 1. In a factor group G/H, if aH = bH, then |a| = |b|.
- 2. If $H \approx K$, then $G/H \approx G/K$.
- 3. Let $R_1, R_2, ..., R_n$ be commutative rings with unity. Then $U(R_1 \oplus R_2 \oplus \cdots \oplus R_n) = U(R_1) \oplus U(R_2) \oplus \cdots \oplus U(R_n)$.
- 4. In an integral domain, for distinct positive integers m and n, if $a^m = b^m$ and $a^n = b^n$, then a = b.