Algebra: Suggested Questions

1. (a) If A and B are subgroups of finite index in a group G, and [G : A]
and [G : B] are relatively prime, then G = AB.

Solution: Firstly, if [G : B] is finite then, for any subgroup A of
G, [A: AN B is finite and < [G : B] and moreover equality holds
if and only if G = AB. To see this let ¢; B, ..., g,B be the left
cosets of B such that ¢g;BN A # and let a; € ¢;B,a; € A for each
i. Then, the a;(A N B) are the cosets of AN B in A. Also, if
g1B, ..., g, B are all the cosets of B, then [G : B] = [A: AN B
and clearly every element of G € AB.

Now, since AN B is a subgroup of both A and B, we have that [G :
ANB]|=[G:A]][A: AnB],and [G: ANB] =[G : B][B: ANB].
Since [G : A] and [G : B] are mutually prime, this shows that
[G: AN B] > [G : A]|G : B]. But, from the previous paragraph
we have that [G: ANB] =[G : A][A: AnB] < [G: A][G : B]
with equality if and only if G = AB. Since, the equality holds,
G = AB.

(b) If H is a proper subgroup of a finite group G, then the set union
Uzecr ' Hz is not the whole of G.

Solution: The number of conjugates of H equals the index of its
normalizer that is [G : Ng] < [G : H] since H C Ny. Let |G| =n
and [G : H] = m. Since all conjugates have at least the identity
in common, |Uyegz ' Hz| < 1+m(n/m—1)=n—(m—1) <n,
since H is proper and hence m = [G : H] > 1.

2. (a) List the Sylow subgroups of non-abelian groups of orders 21 and
39.
Solution: A non-abelian group of order 21 has seven Sylow 3-
groups and one Sylow 7-group. A non-abelian group of order 39
must have thirteen Sylow 3-groups and one Sylow 13-group.

(b) Prove that there is no simple group of order 56.

Solution: Let G be a group of order 56. Consider the Sylow 7-
groups. If G is simple then it must have eight Sylow 7-groups. Any
two of these can intersect only at the indentity. Hence their union
must have cardinality 1+ 8(7 — 1) = 49. Hence, there must be a
unique Sylow 2-group which would imply that G is not simple.

3. Let A be a commutative ring with identity which is not a field. Prove
that the following conditions are equivalent.

(a) The sum of two non-invertible elements is non-invertible.

(b) The non-invertible elements form a proper ideal.



4.

d.

(¢) The ring A possesses a unique maximal ideal.

Give an example of a ring satisfying the above conditions and describe
its unique maximal ideal.

Solution:

(a) = (b): Let a € A be non-invertible. Then —a is also non-invertible
and 0 is non-invertible . Hence, the non-invertible elements form an
additive subgroup of I of A. Morever, if a € [ and b € A, then ba € I.
Otherwise, let ¢ € A such that bac = 1 which would imply that a is
invertible. Since, 1 & I this shows that [ is a proper ideal.

(b) = (c): Let I be the ideal of the non-invertible elements and let
M be a maximal ideal in A. Then clearly every element of M must
be non-invertible, otherwise 1 € M. Hence, M C I. But since, [ is
proper, M = 1.

(¢c) = (a): Let M be the unique maximal ideal of A. Let x,y be
two non-invertible elements of A. Then, () C M,(y) C M since,
(x), (y) are proper ideals, and M is the unique maximal ideal. Then,
(x +y) € M. Now, since 1 ¢ M, this implies that =z + y is also
non-invertible.

Example: The ring k[[z]] with the unique maximal ideal (z).

(a) Let a be the real positive fourth root of 2 and ¢ = y/—1. Find all
intermediate fields in the extension Q(a, i) over Q.

Solution: Handwritten in a separate page.

(b) Let K be a finite field with p™ elements. Show that every element
of K has a unique p-th root in K.

Solution: Consider the Frobenius automorphism of ¢ : K — K,
sending x — xP. Since, this is an automorphism of K, it is clear
that for each x € K, there exists a unique y such that o(y) = x.

Recall that a square matrix is nilpotent if A? = 0 for some p > 0.

(a) If Ais an n X n complex nilpotent matrix, then A" = 0.

Solution: Let p > 0 be the largest integer such that A? # 0. Then,
APz # 0 for some x € C". Then, the vectors z, Az, ..., APz
are linearly independent. Otherwise, let ZOSiSp c;A'r = 0 and
not all ¢, = 0. Let 1 < k < p be the least index such that
cx # 0. Then, Akz = Zk<i§p z—;A’a: Multiplying, by AP~* we get,

APy =37, i, S APR Iy = 0, because AP =0, a contradiction.
Hence, p < n.

(b) Prove that the characteristic polynomial of a nilpotent matrix A
of order n is equal to A".



Solution: The polynomial A” annihilates A and hence the minimal
polynomial of A is M, 0 < m < n. Thus, the characteristic
polynomial is \".

Let A be a matrix of order n. Prove that A is nilpotent if and
only if tr(A?) =0forp=1,...,n.

One direction follows from the previous problem. In the other
direction, first reduce the matrix A to its Jordan normal form
and let A\q,..., \x be its distinct non-zero eigenvalues. Let n; be
the sum of the orders of the Jordan blocks corresponding to the
cigenvalue ;. Then, tr(A?) = >, ,c,mN = 0,1 < p < k.
Looking at these equations as a system equations in the unknowns
n;, we see that the determinant det((\Y);,) # 0 (Vandermonde).
Thus, the only solutionis n; = - - - = ng, = 0. Thus, all eigenvalues
are zero and the characteristic polynomial of A is A\". Thus, A" =
0 and A is nilpotent.



