
Algebra: Suggested Questions

1. (a) If A and B are subgroups of finite index in a group G, and [G : A]
and [G : B] are relatively prime, then G = AB.

Solution: Firstly, if [G : B] is finite then, for any subgroup A of
G, [A : A∩B] is finite and ≤ [G : B] and moreover equality holds
if and only if G = AB. To see this let g1B, . . . , gnB be the left
cosets of B such that giB ∩A 6= and let ai ∈ giB, ai ∈ A for each
i. Then, the ai(A ∩ B) are the cosets of A ∩ B in A. Also, if
g1B, . . . , gnB are all the cosets of B, then [G : B] = [A : A ∩ B]
and clearly every element of G ∈ AB.

Now, since A∩B is a subgroup of both A and B, we have that [G :
A∩B] = [G : A][A : A∩B], and [G : A∩B] = [G : B][B : A∩B].
Since [G : A] and [G : B] are mutually prime, this shows that
[G : A ∩ B] ≥ [G : A][G : B]. But, from the previous paragraph
we have that [G : A ∩ B] = [G : A][A : A ∩ B] ≤ [G : A][G : B]
with equality if and only if G = AB. Since, the equality holds,
G = AB.

(b) If H is a proper subgroup of a finite group G, then the set union
∪x∈Gx−1Hx is not the whole of G.

Solution: The number of conjugates of H equals the index of its
normalizer that is [G : NH ] ≤ [G : H] since H ⊂ NH . Let |G| = n
and [G : H] = m. Since all conjugates have at least the identity
in common, | ∪x∈G x−1Hx| ≤ 1 + m(n/m− 1) = n− (m− 1) < n,
since H is proper and hence m = [G : H] > 1.

2. (a) List the Sylow subgroups of non-abelian groups of orders 21 and
39.

Solution: A non-abelian group of order 21 has seven Sylow 3-
groups and one Sylow 7-group. A non-abelian group of order 39
must have thirteen Sylow 3-groups and one Sylow 13-group.

(b) Prove that there is no simple group of order 56.

Solution: Let G be a group of order 56. Consider the Sylow 7-
groups. If G is simple then it must have eight Sylow 7-groups. Any
two of these can intersect only at the indentity. Hence their union
must have cardinality 1 + 8(7− 1) = 49. Hence, there must be a
unique Sylow 2-group which would imply that G is not simple.

3. Let A be a commutative ring with identity which is not a field. Prove
that the following conditions are equivalent.

(a) The sum of two non-invertible elements is non-invertible.

(b) The non-invertible elements form a proper ideal.



(c) The ring A possesses a unique maximal ideal.

Give an example of a ring satisfying the above conditions and describe
its unique maximal ideal.

Solution:
(a) ⇒ (b): Let a ∈ A be non-invertible. Then −a is also non-invertible
and 0 is non-invertible . Hence, the non-invertible elements form an
additive subgroup of I of A. Morever, if a ∈ I and b ∈ A, then ba ∈ I.
Otherwise, let c ∈ A such that bac = 1 which would imply that a is
invertible. Since, 1 6∈ I this shows that I is a proper ideal.

(b) ⇒ (c): Let I be the ideal of the non-invertible elements and let
M be a maximal ideal in A. Then clearly every element of M must
be non-invertible, otherwise 1 ∈ M . Hence, M ⊂ I. But since, I is
proper, M = I.

(c) ⇒ (a): Let M be the unique maximal ideal of A. Let x, y be
two non-invertible elements of A. Then, (x) ⊂ M, (y) ⊂ M since,
(x), (y) are proper ideals, and M is the unique maximal ideal. Then,
(x + y) ⊂ M . Now, since 1 6∈ M , this implies that x + y is also
non-invertible.

Example: The ring k[[x]] with the unique maximal ideal (x).

4. (a) Let α be the real positive fourth root of 2 and i =
√
−1. Find all

intermediate fields in the extension Q(α, i) over Q.

Solution: Handwritten in a separate page.

(b) Let K be a finite field with pn elements. Show that every element
of K has a unique p-th root in K.

Solution: Consider the Frobenius automorphism of σ : K → K,
sending x 7→ xp. Since, this is an automorphism of K, it is clear
that for each x ∈ K, there exists a unique y such that σ(y) = x.

5. Recall that a square matrix is nilpotent if Ap = 0 for some p > 0.

(a) If A is an n× n complex nilpotent matrix, then An = 0.

Solution: Let p > 0 be the largest integer such that Ap 6= 0. Then,
Apx 6= 0 for some x ∈ Cn. Then, the vectors x, Ax, . . . , Apx
are linearly independent. Otherwise, let

∑
0≤i≤p ciA

ix = 0 and
not all ci = 0. Let 1 ≤ k < p be the least index such that
ck 6= 0. Then, Akx =

∑
k<i≤p

ci

ck
Aix. Multiplying, by Ap−k we get,

Apx =
∑

k<i≤p
ci

ck
Ap−k+ix = 0, because Ap+1 = 0, a contradiction.

Hence, p < n.

(b) Prove that the characteristic polynomial of a nilpotent matrix A
of order n is equal to λn.



Solution: The polynomial λn annihilates A and hence the minimal
polynomial of A is λm, 0 ≤ m ≤ n. Thus, the characteristic
polynomial is λn.

(c) Let A be a matrix of order n. Prove that A is nilpotent if and
only if tr(Ap) = 0 for p = 1, . . . , n.

One direction follows from the previous problem. In the other
direction, first reduce the matrix A to its Jordan normal form
and let λ1, . . . , λk be its distinct non-zero eigenvalues. Let ni be
the sum of the orders of the Jordan blocks corresponding to the
eigenvalue λi. Then, tr(Ap) =

∑
1≤i≤k niλ

p
i = 0, 1 ≤ p ≤ k.

Looking at these equations as a system equations in the unknowns
ni, we see that the determinant det((λp

i )i,p) 6= 0 (Vandermonde).
Thus, the only solution is n1 = · · · = nk = 0. Thus, all eigenvalues
are zero and the characteristic polynomial of A is λn. Thus, An =
0 and A is nilpotent.


