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GRADUATE PRELIMINARY EXAMINATION, Part A Spring Semester 2013
Problem 1A. Score:

Suppose f : R→ R is a bounded continuous function. Calculate the limit

lim
ε→0+

∫ ∞
−∞

f(t)
ε

ε2 + t2
dt

Solution: Multiplying t by ε gives the limit as

lim
ε→0+

∫ ∞
−∞

f(εt)
1

1 + t2
dt

which as ε tends to 0 becomes

f(0)

∫ ∞
−∞

1

1 + t2
dt = πf(0)

Problem 2A. Score:

Suppose that f is a smooth real function defined for all real x, such that |f ′(x)| ≥ ε > 0
and |f ′′(x)| ≤M > 0 for all x.
(1) Show that f has a unique zero z.
(2) Given x0, define a sequence by xn+1 = xn − f(xn)/f ′(xn). Show that

|xn+1 − z| ≤ |xn − z|2M/ε.

(Hint: f(xn) =
∫ xn
z
f ′(x)dx.)

(3) Show that the sequence {xn} converges to the zero z of f provided that |f(x0)| < ε2/M .

Solution: Part 1 follows from the intermdiate value theorem and Rolles theorem in the
usual way.

For part 2 we can assume z = 0. Then

xnf
′(xn)− f(xn) =

∫ xn

0

(f ′(xn)− f ′(x))dx

which has absolute value at most |xn| × |xn|M ≤ x2
nM so

|xn+1| ≤ |xn|2M/ε.



For part 3, note that part 2 shows that each term of the sequence |xn−z|M/ε is bounded
by the square of the previous term, so the sequence tends to zero if the first term is less than
1, which follows from |f(x0)| < ε2/M .

Problem 3A. Score:

Show that
∫∞

0
x exp(−x6(sinx)2)dx is finite.

Solution: More generally, the convergence of the integral
∫∞

0
xα exp(−xβ(sinx)2)dx depends

on the size of the “spikes” at x = nπ where sin(x) = 0. The size of the spike at nπ is bounded
by a constant times

nα
∫ ∞
−∞

exp(−nβx2)dx

which is bounded by a constant times

nα−β/2.

So the integral converges if the series Σnα−β/2 does, which is true if α − β/2 < −1, in
particular if α = 1, β = 6.

Problem 4A. Score:

Find ∫
C

cosh(πz)

z(z2 + 1)
dz

when C is the circle |z| = 2, described in the positive sense.

Solution: The singularities inside of C are at z = 0, i and −i. The residue at 0 is 1. The
residues at i and −i are 1

2
. The integral is 4πi.

Problem 5A. Score:

Let n ≥ 1 and let {a0, a1, . . . , an} be complex numbers such that an 6= 0. For θ ∈ R, define

f(θ) = a0 + a1e
iθ + a2e

2iθ + . . .+ ane
niθ.

Prove that there exists θ ∈ R such that |f(θ)| > |a0|.



Solution: Suppose that the claim is false. Then for all θ ∈ R, we have |f(θ)| ≤ |a0|. Put
g(z) = a0 +a1z+a2z

2 + . . .+anz
n so that f(θ) = g(eiθ). By the maximum modulus principle,

applied to K = {z : |z| ≤ 1}, we know that |g| is maximized on some boundary point of
K. Hence |g| also has an interior maximum at 0, so g must be a constant function. This
contradicts the assumptions that n ≥ 1 and an 6= 0.

Problem 6A. Score:

Show that if V is a real vector space with a positive definite symmetric bilinear form 〈·, ·〉 and
W ⊂ V is a linear subspace then W⊥ = ((W⊥)⊥)⊥. Give an example such that W 6= (W⊥)⊥.

Solution: For any subspace we have X ⊂ X⊥⊥ as X is orthogonal to X⊥, so applying this
to X = W⊥ shows that W⊥ ⊂ ((W⊥)⊥)⊥. On the other hand, If X ⊂ Y then Y ⊥ ⊂ X⊥.
Applying this to X = W , Y = W⊥⊥ shows that ((W⊥)⊥)⊥ ⊂ W⊥. So ((W⊥)⊥)⊥ = W⊥.

For the example, take V = `2(N) and W ⊂ V the subspace of eventual ly 0 sequences.
Then W⊥ = {0} so (W⊥)⊥ = V but (1, 1/2, 1/3, . . .) 6∈ W .

Problem 7A. Score:

Let A be a matrix over the field of complex numbers. Suppose A has finite order, in other
words Am = I for some positive integer m. Prove that A is diagonalizable. Give an example
of a matrix of finite order over an algebraically closed field that is not diagonalizable.

Solution: By a standard theorem of linear algebra, A is diagonalizable if and only if its min-
imal polynomial has no repeated roots. The hypothesis implies that the minimal polynomial
of A divides Xm − 1. Hence it has distinct roots, since Xm − 1 does.

The matrix
(

11
01

)
over an algebraically closed field of characteristic p > 0 has finite order

p but is not diagonalizable: both eigenvalues are 1, so if it were diagonalizable it would have
to be the identity matrix.

Problem 8A. Score:

Let m and n be integers greater than 1. Prove that logm(n) is rational if and only if m = lr

and n = ls, for some positive integers l, r, and s.

Solution: If m = lr and n = ls, then logm(n) = s/r. Conversely, suppose logm(n) = s/r,
where s and r are integers which we may assume coprime and positive (n > 1 implies



logm(n) > 0). Then ms = nr. By the fundamental theorem of arithmetic, the prime
factorizations of m and n must be of the form m = pe11 · · · p

ek
k , n = pf11 · · · p

fk
k , where sei = rfi

for all i. Since r and s are coprime, this implies ei = rhi, fi = shi for some hi. Hence m = lr

and n = ls, where l = ph11 · · · p
hk
k .

Problem 9A. Score:

Let K be a field. Let R be an integral domain which contains K and is finite-dimensional
(as a vector space) over K. Prove that R is a field.

Solution: Let x ∈ R, x 6= 0. The map mx : R → R defined by mx(r) = xr is a linear
endomorphism of R as a vector space over K. Since R is an integral domain, the kernel
of mx is zero, i.e., mx is injective. Since R is finite-dimensional, this implies that mx is
surjective. Then the element y such that mx(y) = 1 is an inverse of x.

Alternate solution: the fact that R is an integral domain implies that the minimal poly-
nomial P (X) of x over K is irreducible. In particular, its constant term c is non-zero.
The identity P (x) = 0 can be rewritten as xQ(x) = −c, where P (X) − c = XQ(X), so
y = −Q(x)/c is an inverse of x.

Problem 1B. Score:

Find
∫ 1

0
arctan(x)dx.

Solution: Integration by parts gives

1× arctan(1)−
∫ 1

0

x

1 + x2
dx = π/4− (log 2)/2.

Problem 2B. Score:

Prove that the intersection of a decreasing sequence of closed connected subsets of a compact
metric space is connected. Give an example to show that this is false if the assumption that
the space is compact is dropped.

Solution:



Suppose that X1, X2, ... is a decreasing sequence of closed connected subsets with in-
tersection X. If X is not connected, it is the union of non-empty disjoint closed subsets
Y and Z. Pick disjoint open subsets U and V containing Y and Z. Then U , V , and the
complements of the Xi form an open cover of a compact space, which therefore has a finite
subcover, so some Xi is contained in the union of U and V . But this contradicts the fact
that Xi is connected.

The sequence of connected subsets of the plane consisting of the union of the set x = 0,
x = 1, y ≥ n has disconnected intersection.

Problem 3B. Score:

Let g be 2π-periodic, continuous on [−π, π] and have Fourier series

a0

2
+
∞∑
n=1

(an cosnx+ bn sinnx) .

Let f be 2π-periodic and satisfy the differential equation

f ′′(x) + kf(x) = g(x)

where k 6= n2, n = 1, 2, 3, . . .. Find the Fourier series of f and prove that it converges
everywhere.

Solution:

f(x) =
a0

2k
+
∞∑
n=1

(
an

k − n2
cosnx+

bn
k − n2

sinnx) .

This converges (uniformly) for all x as the numbers an and bn are bounded, and the series∑
1

k−n2 converges.

Problem 4B. Score:

Let U be an open subset of C. Let K be a closed bounded subset of C that is contained in
U . Put

D = min
p∈K,q/∈U

|p− q|.

That is, D is the closest distance between K and C− U . (If U = C then we put D =∞.)
Suppose that f is an analytic function on U so that for all z ∈ U , we have |f(z)| ≤ M .

Here M is a fixed positive number. Find an explicit number C < ∞, depending on M and
D, so that for all z0 ∈ K we have |f ′(z0)| ≤ C. Justify your answer.



Solution: Given z0 ∈ K and r < D, put Cr = {z : |z− z0| = r}. Then f is analytic in and
on Cr. We have

f ′(z0) =
1

2πi

∫
Cr

f(z)

(z − z0)2
dz,

so |f ′(z0)| ≤ 1
2π
· M
r2
· 2πr = M

r
. Taking r → D, we can put C = M

D
.

Problem 5B. Score:

Which of the following domains are biholomorphically equivalent to each other: the complex
plane C, the unit disk D ⊂ C, the upper halfplane H ⊂ C? Write explicit biholomorphisms
or prove they cannot exist.

Solution: An explicit biholomorphism φ : H→ D is given by

φ(z) =
z − i
z + i

If a holomorphic function f : C → C is bounded then it is constant. In particular, any
holomorphic function f : C→ D ⊂ C is constant and hence not a biholomorphism.

Problem 6B. Score:

Show that the n× n (Cauchy) matrix with entries 1/(xi − yj) has determinant∏
1≤j<i≤n(xi − xj)(yj − yi)∏

1≤i,j≤n(xi − yj)

Solution: Multiplying the determinant by
∏

1≤i,j≤n(xi − yj) gives a polynomial of degree
n(n− 1). This polynomial vanishes whenever two x’s or two y’s are equal so is divisible by∏

1≤j<i≤n(xi−xj)(yj−yi), and therefore equal to a constant times this as the degrees are the
same. The constant can be checked to be 1 by looking at the coefficient of some monomial.

Problem 7B. Score:

Prove the following three statements about real n× n matrices.
1. If A is an orthogonal matrix whose eigenvalues are all different from −1, then I + A is
nonsingular and S = (I − A)(I + A)−1 is skew-symmetric.



2. If S is a skew-symmetric matrix, then A = (I −S)(I +S)−1 is an orthogonal matrix with
no eigenvalue equal to −1.
3. The correspondence (called the Cayley transform) A↔ S from Parts 1 and 2 is one-to-one.

Solution: For part 1, S = I + A has no eigenvalues 0 so is non-singular. Its transpose
is (I + AT )−1(I − AT ) = (I + A−1)−1(I − A−1) = (A + I)−1(A − I) = −S so S is skew
symmetric. Part 2 is similar to part 1 (noting that all eigenvalues of S are imaginary so
1 + S is invertible). Since the maps in parts 1 and 2 are inverses we get a 1:1 bijection.

Problem 8B. Score:

Consider the symmetric group Σn in its presentation as n× n permutation matrices. Define
the “expected trace” to be the weighted sum of traces

En =
1

n!

∑
g∈Σn

Trace(g)

Calculate En.

Solution: The ith diagonal entry of the permutation matrix g is equal to 1 for exactly
(n − 1)! elements g since such g can be regarded as elements of Σn−1. Thus summing over
i, we find En = n(n− 1)!/n! = 1.

Problem 9B. Score:

If F is a finite field, show that more than half the elements of F are squares. Show that
every element is the sum of 2 squares.

Solution: Any non-zero element has at most 2 square roots, so at least half the non-zero
elements are squares. The element 0 is also a square, so more than half the elements are
squares.

If b is any element of the finite field, then the sets of elements of the form x2 and b− y2

both contain more than half the elements of the field, so they have an element in common.
So x2 = b− y2 for some x and y, so b is the sum of the squares of x and y.


