Department of Mathematics, University of California, Berkeley

GRADUATE PRELIMINARY EXAMINATION, Part A Spring Semester 2013
Problem 1A. Score:

Suppose [ : R — R is a bounded continuous function. Calculate the limit
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Solution: Multiplying ¢ by € gives the limit as
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which as € tends to 0 becomes
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Problem 2A. Score:

Suppose that f is a smooth real function defined for all real x, such that |f'(x)| > € >0
and |f"(x)] < M > 0 for all .
(1) Show that f has a unique zero z.
(2) Given x, define a sequence by x,1 =z, — f(x,)/f'(x,). Show that

|Tpy1 — 2| < |2 — 22 M /e

(Hint: f(z,) = [ f'(z)dz.)
(3) Show that the sequence {,} converges to the zero z of f provided that |f(xo)| < €*/M.

Solution: Part 1 follows from the intermdiate value theorem and Rolles theorem in the

usual way.
For part 2 we can assume z = 0. Then
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which has absolute value at most |x,| x |z,|M < z2M so

(21| < |wnl?M/e.



For part 3, note that part 2 shows that each term of the sequence |z,, — z| M /e is bounded
by the square of the previous term, so the sequence tends to zero if the first term is less than
1, which follows from | f(zo)| < €*/M.

Problem 3A. Score:

Show that [;° 2 exp(—a°(sinz)?)dz is finite.

Solution: More generally, the convergence of the integral [~z exp(—”(sin z)?)dx depends
on the size of the “spikes” at © = nm where sin(z) = 0. The size of the spike at nr is bounded
by a constant times

n® / exp(—n’z?)dx

oo

which is bounded by a constant times

ne—58/2

So the integral converges if the series ¥n® %/2 does, which is true if a — 3/2 < —1, in
particular if « = 1, § = 6.

Problem 4A. Score:

Find L
/ cosh(7z) i
c 22 +1)
when C' is the circle |z| = 2, described in the positive sense.

Solution: The singularities inside of C' are at z = 0, ¢ and —i. The residue at 0 is 1. The
residues at ¢ and —i¢ are % The integral is 4.

Problem 5A. Score:

Let n > 1 and let {ag,aq,...,a,} be complex numbers such that a, # 0. For § € R, define
f(0) =ap+ a1 + ae® + ..+ a,e™.

Prove that there exists § € R such that |f(6)] > |ao|.



Solution: Suppose that the claim is false. Then for all # € R, we have |f(0)| < |ag|. Put
g(2) = ap+arz+azz®+.. . +a,2" so that f(0) = g(e?). By the maximum modulus principle,
applied to K = {z : |z| < 1}, we know that |g| is maximized on some boundary point of
K. Hence |g| also has an interior maximum at 0, so ¢ must be a constant function. This
contradicts the assumptions that n > 1 and a,, # 0.

Problem 6A. Score:

Show that if V' is a real vector space with a positive definite symmetric bilinear form (-, -) and
W C V is a linear subspace then W+ = ((W1)4)+. Give an example such that W # (W)L

Solution: For any subspace we have X C X** as X is orthogonal to X, so applying this
to X = W+ shows that W+ c ((W+)4)+. On the other hand, If X C Y then Y+ C X*.
Applying this to X = W, Y = W+t shows that (W+4)5)t c W, So (WH)H)+ =W+,

For the example, take V' = ¢*(N) and W C V the subspace of eventual ly 0 sequences.
Then W+ = {0} so (W)L =V but (1,1/2,1/3,...) € W.

Problem 7A. Score:

Let A be a matrix over the field of complex numbers. Suppose A has finite order, in other
words A™ = [ for some positive integer m. Prove that A is diagonalizable. Give an example
of a matrix of finite order over an algebraically closed field that is not diagonalizable.

Solution: By a standard theorem of linear algebra, A is diagonalizable if and only if its min-
imal polynomial has no repeated roots. The hypothesis implies that the minimal polynomial
of A divides X™ — 1. Hence it has distinct roots, since X™ — 1 does.

The matrix (é}) over an algebraically closed field of characteristic p > 0 has finite order
p but is not diagonalizable: both eigenvalues are 1, so if it were diagonalizable it would have
to be the identity matrix.

Problem 8A. Score:

Let m and n be integers greater than 1. Prove that log,,(n) is rational if and only if m = ["
and n = [°, for some positive integers [, r, and s.

Solution: If m = {" and n = [°, then log,,(n) = s/r. Conversely, suppose log,, (n) = s/r,
where s and r are integers which we may assume coprime and positive (n > 1 implies



log,,(n) > 0). Then m® = n". By the fundamental theorem of arithmetic, the prime
factorizations of m and n must be of the form m = pi* - - pi*, n = p{l = -pi’“, where se; = 1f;
for all 7. Since r and s are coprime, this implies e; = rh;, f; = sh; for some h;. Hence m = 1"
and n = [*, where | = p}fl o -pZ’“.

Problem 9A. Score:

Let K be a field. Let R be an integral domain which contains K and is finite-dimensional
(as a vector space) over K. Prove that R is a field.

Solution: Let z € R, ©x # 0. The map m,: R — R defined by m,(r) = ar is a linear
endomorphism of R as a vector space over K. Since R is an integral domain, the kernel
of m, is zero, i.e., m, is injective. Since R is finite-dimensional, this implies that m, is
surjective. Then the element y such that m,(y) = 1 is an inverse of x.

Alternate solution: the fact that R is an integral domain implies that the minimal poly-
nomial P(X) of z over K is irreducible. In particular, its constant term ¢ is non-zero.
The identity P(x) = 0 can be rewritten as 2Q(x) = —c¢, where P(X) — ¢ = XQ(X), so
y = —Q(z)/c is an inverse of x.

Problem 1B. Score:

Find fol arctan(z)dx.

Solution: Integration by parts gives

x
1+ 22

1 x arctan(1) — /1 de =7n/4 — (log2)/2.

Problem 2B. Score:

Prove that the intersection of a decreasing sequence of closed connected subsets of a compact
metric space is connected. Give an example to show that this is false if the assumption that
the space is compact is dropped.

Solution:



Suppose that X, X5, ... is a decreasing sequence of closed connected subsets with in-
tersection X. If X is not connected, it is the union of non-empty disjoint closed subsets
Y and Z. Pick disjoint open subsets U and V' containing ¥ and Z. Then U, V, and the
complements of the X; form an open cover of a compact space, which therefore has a finite
subcover, so some X; is contained in the union of U and V. But this contradicts the fact
that X; is connected.

The sequence of connected subsets of the plane consisting of the union of the set = 0,
x =1, y > n has disconnected intersection.

Problem 3B. Score:

Let g be 2m-periodic, continuous on [—7, 7| and have Fourier series
a [o.¢]
0 :
b + ngl(an cosnx + by, sinnz) .

Let f be 2w-periodic and satisfy the differential equation
f(z) + kf(x) = g(x)

where k # n?,n = 1,2,3,.... Find the Fourier series of f and prove that it converges
everywhere.
Solution:
o0 . b
f(z) = ;—Z + nz:l(k i 5 oSN + o sinnx) .

This converges (uniformly) for all x as the numbers a,, and b,, are bounded, and the series
> =3 converges.

Problem 4B. Score:

Let U be an open subset of C. Let K be a closed bounded subset of C that is contained in
U. Put
D= min |p—q|.
pEK,q¢U

That is, D is the closest distance between K and C — U. (If U = C then we put D = 00.)

Suppose that f is an analytic function on U so that for all z € U, we have |f(z)| < M.
Here M is a fixed positive number. Find an explicit number C' < oo, depending on M and
D, so that for all zp € K we have |f'(z2)| < C. Justify your answer.



Solution: Given 2y € K and r < D, put C, = {2z : |z — 2| = r}. Then f is analytic in and

on C,. We have )
iy = L[ _fE)
f (ZO) - 27” /CT (Z _ ZQ>2 dZ,

so |f'(20)] < 5= - M. 277 = % Taking r — D, we can put C' = %_

Problem 5B. Score:

Which of the following domains are biholomorphically equivalent to each other: the complex
plane C, the unit disk D C C, the upper halfplane H C C? Write explicit biholomorphisms
or prove they cannot exist.

Solution: An explicit biholomorphism ¢ : H — D is given by

zZ—1
z+1

¢(2) =

If a holomorphic function f : C — C is bounded then it is constant. In particular, any
holomorphic function f: C — D C C is constant and hence not a biholomorphism.

Problem 6B. Score:

Show that the n x n (Cauchy) matrix with entries 1/(z; — y;) has determinant

ngj<ign($i — ) (Y5 — ¥i)
ngi,j§n<xi — ;)

Solution: Multiplying the determinant by Hlsi, jgn(xi —y;) gives a polynomial of degree
n(n — 1). This polynomial vanishes whenever two z’s or two y’s are equal so is divisible by
[Ti<jcicn(®i—2;)(y; —vi), and therefore equal to a constant times this as the degrees are the
same. The constant can be checked to be 1 by looking at the coefficient of some monomial.

Problem 7B. Score:

Prove the following three statements about real n x n matrices.
1. If A is an orthogonal matrix whose eigenvalues are all different from —1, then I + A is
nonsingular and S = (I — A)(I + A)~! is skew-symmetric.



2. If S is a skew-symmetric matrix, then A = (I —S)(I + S)~! is an orthogonal matrix with
no eigenvalue equal to —1.
3. The correspondence (called the Cayley transform) A <> S from Parts 1 and 2 is one-to-one.

Solution: For part 1, S = I + A has no eigenvalues 0 so is non-singular. Its transpose
is (I+ A M I -AT) = I+ A YT -AY)Y=(A+D)1(A-1) = —S s0 S is skew
symmetric. Part 2 is similar to part 1 (noting that all eigenvalues of S are imaginary so
1+ S is invertible). Since the maps in parts 1 and 2 are inverses we get a 1:1 bijection.

Problem 8B. Score:

Consider the symmetric group 3, in its presentation as n x n permutation matrices. Define
the “expected trace” to be the weighted sum of traces

Calculate E,,.

Solution: The ith diagonal entry of the permutation matrix ¢ is equal to 1 for exactly
(n — 1)! elements ¢ since such g can be regarded as elements of ¥, ;. Thus summing over
i, we find E, =n(n —1)!/n! = 1.

Problem 9B. Score:

If F'is a finite field, show that more than half the elements of F' are squares. Show that
every element is the sum of 2 squares.

Solution: Any non-zero element has at most 2 square roots, so at least half the non-zero
elements are squares. The element 0 is also a square, so more than half the elements are
squares.

If b is any element of the finite field, then the sets of elements of the form 22 and b — /2
both contain more than half the elements of the field, so they have an element in common.
So 22 = b — y? for some x and y, so b is the sum of the squares of z and y.



