Preliminary Exam - Spring 2000

Problem 1 Are the 4×4 matrices

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad and \qquad B = \begin{pmatrix} -1 & 0 & 0 & 0 \\ -1 & 1 & 1 & -1 \\ -1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \end{pmatrix}$$

similar?

Problem 2 Let $\{f_n\}_{n=1}^{\infty}$ be a uniformly bounded equicontinuous sequence of real-valued functions on the compact metric space (X, d). Define the functions $g_n : X \to \mathbb{R}$, for $n \in \mathbb{N}$ by

$$g_n(x) = \max\{f_1(x), \dots, f_n(x)\}.$$

Prove that the sequence $\{g_n\}_{n=1}^{\infty}$ converges uniformly.

Problem 3 Prove that the group $G = \mathbb{Q}/\mathbb{Z}$ has no proper subgroup of finite index.

Problem 4 Let f and g be entire functions such that $\lim_{z\to\infty} f(g(z)) = \infty$. Prove that f and g are polynomials.

Problem 5 Let a and x_0 be positive numbers, and define the sequence $(x_n)_{n=1}^{\infty}$ recursively by

$$x_n = \frac{1}{2} \left(x_{n-1} + \frac{a}{x_{n-1}} \right) \,.$$

Prove that this sequence converges, and find its limit.

Problem 6 Let A be an $n \times n$ matrix over \mathbb{C} whose minimal polynomial μ has degree k.

1. Prove that, if the point λ of \mathbb{C} is not an eigenvalue of A, then there is a polynomial p_{λ} of degree k-1 such that $p_{\lambda}(A) = (A - \lambda I)^{-1}$.

2. Let $\lambda_1, \ldots, \lambda_k$ be distinct points of \mathbb{C} that are not eigenvalues of A. Prove that there are complex numbers c_1, \ldots, c_k such that

$$\sum_{j=1}^{k} c_j (A - \lambda_j I)^{-1} = I \,.$$

Problem 7 Let f be a positive function of class C^2 on $(0,\infty)$ such that $f' \leq 0$ and f'' is bounded. Prove that $\lim_{t\to\infty} f'(t) = 0$.

Problem 8 Find the cardinality of the set of all subrings of \mathbb{Q} , the field of rational numbers.

Problem 9 Evaluate

$$I = \int_{|z|=1} \frac{\cos^3 z}{z^3} \, dz \,,$$

where the direction of integration is counterclockwise.

Problem 10 Let S be an uncountable subset of \mathbb{R} . Prove that there exists a real number t such that both sets $S \cap (-\infty, t)$ and $S \cap (t, \infty)$ are uncountable.

Problem 11 Let A_n be the $n \times n$ matrix whose entries a_{jk} are given by

$$a_{jk} = \begin{cases} 1 & \text{if } |j-k| = 1\\ 0 & \text{otherwise.} \end{cases}$$

Prove that the eigenvalues of A are symmetric with respect to the origin.

Problem 12 Suppose that H_1 and H_2 are distinct subgroups of a group G such that $[G : H_1] = [G : H_2] = 3$. What are the possible values of $[G : H_1 \cap H_2]$?

Problem 13 Let f be a nonconstant entire function whose values on the real axis are real and nonnegative. Prove that all real zeros of f have even order.

Problem 14 Let I_1, \ldots, I_n be disjoint closed nonempty subintervals of \mathbb{R} .

1. Prove that if p is a real polynomial of degree less than n such that

$$\int_{I_j} p(x)dx = 0 , \qquad \text{for } j = 1, \dots, n$$

then p = 0.

2. Prove that there is a nonzero real polynomial p of degree n that satisfies all the above equations.

Problem 15 Let F, with components F_1, \ldots, F_n , be a differentiable map of \mathbb{R}^n into \mathbb{R}^n such that F(0) = 0. Assume that

$$\sum_{j,k=1}^{n} \left| \frac{\partial F_j(0)}{\partial x_k} \right|^2 = c < 1 .$$

Prove that there is a ball B in \mathbb{R}^n with center 0 such that $F(B) \subset B$.

Problem 16 Let A be a complex $n \times n$ matrix such that the sequence $(A^n)_{n=1}^{\infty}$ converges to a matrix B. Prove that B is similar to a diagonal matrix with zeros and ones along the main diagonal.

Problem 17 Evaluate the integrals

$$I(t) = \int_{-\infty}^{\infty} \frac{e^{itx}}{(x+i)^2} dx , \qquad -\infty < t < \infty .$$

Problem 18 Let G be a finite group and p a prime number. Suppose a and b are elements of G of order p such that b is not in the subgroup generated by a. Prove that G contains at least $p^2 - 1$ elements of order p.