Preliminary Exam - Spring 2001

Problem 1 Let \mathbf{F} be a finite field of order q, and let V be a two dimensional vector space over \mathbf{F} . Find the number of endomorphisms of V that fix at least one nonzero vector.

Problem 2 Let the continuous function $f : \mathbb{R} \to \mathbb{R}$ be periodic with period 1. Prove that, for any real number c, there is a real number x_0 such that $f(x_0 + c) = f(x_0)$.

Problem 3 Find all commutative rings R with identity such that R has a unique maximal ideal and such that the group of units of R is trivial.

Problem 4 Evaluate

$$\int_0^\infty \frac{1}{1+x^5} dx \, .$$

Problem 5 Let α and β be real numbers such that the subgroup Γ of \mathbb{R} generated by α and β is closed. Prove that α and β are linearly dependent over \mathbb{Q} .

Problem 6 Let S be a special orthogonal $n \times n$ matrix, a real $n \times n$ matrix satisfying $S^t S = I$ and det(S) = 1.

- 1. Prove that if n is odd then 1 is an eigenvalue of S.
- 2. Prove that if n is even then 1 need not be an eigenvalue of S.

Problem 7 Let the functions $f_n : [0,1] \to [0,1]$ (n = 1,2,...) satisfy $|f_n(x) - f_n(y)| \leq |x-y|$ whenever $|x-y| \geq 1/n$. Prove that the sequence $\{f_n\}_{n=1}^{\infty}$ has a uniformly convergent subsequence.

Problem 8 If G is a finite group, must $S = \{g^2 | g \in G\}$ be a subgroup? Provide a proof or a counterexample.

Problem 9 1. Prove that an entire function with a positive real part is constant.

2. Prove the analogous result for 2×2 matrix functions: If $F(z) = (f_{jk}(z))$ is a matrix function in the complex plane, each entry f_{jk} being entire, and if $F(z) + F(z)^*$ is positive definite for each z, then F is constant. (Here, $F(z)^*$ is the conjugate transpose of F(z).)

Problem 10 Let M_n be the vector space of $n \times n$ complex matrices. For A in M_n define the linear transformation of T_A on M_n by $T_A(X) = AX - XA$. Prove that the rank of T_A is at most $n^2 - n$.

Problem 11 Let U be a nonempty, proper, open subset of \mathbb{R}^n . Construct a function $f : \mathbb{R}^n \to \mathbb{R}$ that is discontinuous at each point of U and continuous at each point of $\mathbb{R}^n \setminus U$.

Problem 12 Let S_9 denote the group of permutations of $\{1, 2, ..., 9\}$, and let A_9 denote the group of even permutations. Let 1 denote the identity permutation in S_9 .

- 1. Determine the smallest positive integer m such that $\sigma^m = 1$ for all σ in S_9 .
- 2. Determine the smallest positive integer n such that $\sigma^n = 1$ for all σ in A_9 .

Problem 13 Let the power series $\sum_{n=0}^{\infty} c_n z^n$, with positive radius of convergence R, represent the function f in the disk |z| < R. For k = 0, 1, ... let s_k be the k-th partial sum of the series $s_k(z) = \sum_{n=0}^{k} c_n z^n$. Prove that

$$\sum_{k=0}^{\infty} |f(z) - s_k(z)| < \infty$$

for each z in the disk |z| < R.

Problem 14 Consider the differential-delay equation given $byy'(t) = -y(t - t_0)$. Here, the independent variable t is a real variable, the function y is allowed to be complex valued, and t_0 is a positive constant. Prove that if $0 < t_0 < \pi/2$ then every solution of the form $y(t) = e^{\lambda t}$, with λ complex, tends to 0 as $t \to +\infty$.

Problem 15 Let A be an $n \times n$ matrix over a field K. Prove that

$$\operatorname{rank} A^2 - \operatorname{rank} A^3 \leqslant \operatorname{rank} A - \operatorname{rank} A^2$$

Problem 16 Let T_0 be the interior of a triangle in \mathbb{R}^2 with vertices A, B, C. Let T_1 be the interior of the triangle whose vertices are the midpoints of the sides of T_0 , T_2 the interior of the triangle whose vertices are the midpoints of the sides of T_1 , and so on. Describe the set $\bigcap_{n=0}^{\infty} T_n$.

Problem 17 Prove that the polynomial $f(x) = 16x^5 - 125x^4 + 50x^3 - 100x^2 + 75x + 25$ is irreducible over the rationals.

Problem 18 Let f be an entire function such that

$$\int_0^{2\pi} |f(re^{i\theta})|^2 d\theta \leqslant Ar^{2k} \qquad (0 < r < \infty) ,$$

where k is a positive integer and A is a positive constant. Prove that f is a constant multiple of the function z^k .