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1. Prove that the distinct complex numbers z1, z2 and z3 are the vertices of an equilateral
triangel if and only if

z21 + z22 + z23 = z1z2 + z2z3 + z3z1.

2. Let f(z) =
∞∑
n=0

cnz
n be analytic and one-to-one in |z| < 1. For 0 < r0 < 1, let Dr0 be

the closed disk |z| ≤ r0. Show that the area A of f(Dr0) is finite and is given by

A = π

∞∑
n=1

n|cn|2r2n0 .

[Hint: First find a formula in terms of polar coordinates in xy-plane for the area element
dudv using complex analysis, where f = u+ iv. Note that dxdy = rdrdθ.]

3. Assume f is continuous in the region: R0 ≤ |z − a| < ∞, 0 ≤ arg(z − a) ≤ β0
(0 < β0 ≤ 2π) and the limit lim

z→∞
(z − a)f(z) = A exists. Show that

lim
r→+∞

∫
γr

f(z)dz = iAβ0 ,

where γr := {z | z = a+ reit, 0 ≤ t ≤ β0}.

4. Computer the integral I(b) =

∫ π
2

0

(tan t)ibdt for b ∈ R. Hint: Some simple substitution

will reduce the integral to what we have done in homework and lectures.

5. Let f(z) = 2z5 + 8z − 1. Show that all five zeros of f(z) are inside the disk D(0, 2)
and only one zero is inside the disk D(0, 1).

6. (Cauchy’s formula for “exterior” region) Let γ be piecewise smooth simple closed curve
with interior Ω1 and exterior Ω2. Assume f ′(z) exists in an open set containing γ and
Ω2 and limz→∞ f(z) = A. Show that

1

2πi

∫
γ

f(ξ)

ξ − z
dξ =

{
A, if z ∈ Ω1,

−f(z) + A, if z ∈ Ω2


