Preliminary Exam - Spring 1978

Problem 1 Let $k \ge 0$ be an integer and define a sequence of maps

$$f_n : \mathbb{R} \to \mathbb{R}, \quad f_n(x) = \frac{x^k}{x^2 + n}, \quad n = 1, 2, \dots$$

For which values of k does the sequence converge uniformly on \mathbb{R} ? On every bounded subset of \mathbb{R} ?

Problem 2 Prove that a map $g : \mathbb{R}^n \to \mathbb{R}^n$ is continuous only if its graph is closed in $\mathbb{R}^n \times \mathbb{R}^n$. Is the converse true? Note: See also Problem ??.

Problem 3 Let $f : \mathbb{C} \to \mathbb{C}$ be a nonconstant entire function. Prove that $f(\mathbb{C})$ is dense in \mathbb{C} .

Problem 4 Evaluate

$$\int_{-\infty}^{\infty} \frac{\sin^2 x}{x^2} \, dx \, .$$

Problem 5 let \mathbb{Z}_n denote the ring of integers modulo n. Let $\mathbb{Z}_n[x]$ be the ring of polynomials with coefficients in \mathbb{Z}_n . Let \mathfrak{I} denote the ideal in $\mathbb{Z}_n[x]$ generated by $x^2 + x + 1$.

- 1. For which values of $n, 1 \leq n \leq 10$, is the quotient ring $\mathbb{Z}_n[x]/\mathfrak{I}$ a field?
- 2. Give the multiplication table for $\mathbb{Z}_2/\mathfrak{I}$.

Problem 6 Prove that the sum of two algebraic numbers is algebraic. (An algebraic number is a complex number which is a root of a polynomial with rational coefficients.)

Problem 7 What is the volume enclosed by the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1?$$

Problem 8 Consider the differential equation

$$\frac{dx}{dt} = x^2 + t^2, \quad x(0) = 1$$

- 1. Prove that for some b > 0, there is a solution defined for $t \in [0, b]$.
- 2. Find an explicit value of b having the property in Part 1.
- 3. Find a c > 0 such that there is no solution on [0, c].

Problem 9 Determine the Jordan Canonical Form of the matrix

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 4 \end{pmatrix}.$$

Problem 10 Suppose A is a real $n \times n$ matrix.

- 1. Is it true that A must commute with its transpose?
- 2. Suppose the columns of A (considered as vectors) form an orthonormal set; is it true that the rows of A must also form an orthonormal set?

Problem 11 Show that there is a complex analytic function defined on the set $U = \{z \in \mathbb{C} \mid |z| > 4\}$ whose derivative is

$$\frac{z}{(z-1)(z-2)(z-3)}$$

Is there a complex analytic function on U whose derivative is

$$\frac{z^2}{(z-1)(z-2)(z-3)}$$
 ?

Problem 12 Prove that the uniform limit of a sequence of complex analytic functions is complex analytic. Is the analogous theorem true for real analytic functions?

Problem 13 1. For which real numbers $\alpha > 0$ does the differential equation

$$\frac{dx}{dt} = x^{\alpha}, \quad x(0) = 0,$$

have a solution on some interval [0, b], b > 0?

2. For which values of α are there intervals on which two solutions are defined?

Problem 14 Let G be a group of order 10 which has a normal subgroup of order 2. Prove that G is abelian.

Problem 15 Is $x^4 + 1$ irreducible over the field of real numbers? The field of rational numbers? A field with 16 elements?

Problem 16 Let A and B denote real $n \times n$ symmetric matrices such that AB = BA. Prove that A and B have a common eigenvector in \mathbb{R}^n .

Problem 17 Evaluate

$$\int \int_{\mathcal{A}} e^{-x^2 - y^2} \, dx \, dy \,,$$

where $\mathcal{A} = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}.$

Problem 18 Let M be a matrix with entries in a field \mathbf{F} . The row rank of M over \mathbf{F} is the maximal number of rows which are linearly independent (as vectors) over \mathbf{F} . The column rank is similarly defined using columns instead of rows.

- 1. Prove row rank = column rank.
- 2. Find a maximal linearly independent set of columns of

(1)	0	3	-2
2	1	2	0
0	-	-4	4
1	1	1	2
$\backslash 1$	0	1	2 /

taking $\mathbf{F} = \mathbb{R}$.

3. If **F** is a subfield of **K**, and *M* has entries in **F**, how is the row rank of *M* over **F** related to the row rank of *M* over **K**?

Problem 19 Let $f : [0,1] \to \mathbb{R}$ be Riemann integrable over [b,1] for all b such that $0 < b \leq 1$.

1. If f is bounded, prove that f is Riemann integrable over [0, 1].

2. What if f is not bounded?

Problem 20 Consider the system of equations

$$3x + y - z + u4 = 0$$

$$x - y + 2z + u = 0$$

$$2x + 2y - 3z + 2u = 0$$

- 1. Prove that for some $\varepsilon > 0$, the system can be solved for (x, y, u) as a function of $z \in [-\varepsilon, \varepsilon]$, with x(0) = y(0) = u(0) = 0. Are such functions x(z), y(z) and u(z) continuous? Differentiable? Unique?
- 2. Show that the system cannot be solved for (x, y, z) as a function of $u \in [-\delta, \delta]$, for all $\delta > 0$.