Preliminary Exam - Spring 1980

Problem 1 Let $f : \mathbb{R} \to \mathbb{R}$ be the unique function such that f(x) = x if $-\pi \leq x < \pi$ and $f(x + 2n\pi) = f(x)$ for all $n \in \mathbb{Z}$.

1. Prove that the Fourier series of f is

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 2\sin nx}{n} \cdot$$

- 2. Prove that the series does not converge uniformly.
- 3. For each $x \in \mathbb{R}$, find the sum of the series.

Problem 2 Let $f_n : \mathbb{R} \to \mathbb{R}$ be differentiable for each $n = 1, 2, \ldots$ with $|f'_n(x)| \leq 1$ for all n, x. Assume

$$\lim_{n \to \infty} f_n(x) = g(x)$$

for all x. Prove that $g : \mathbb{R} \to \mathbb{R}$ is continuous.

Problem 3 Let P_2 denote the set of real polynomials of degree ≤ 2 . Define the map $J: P_2 \to \mathbb{R}$ by

$$J(f) = \int_0^1 f(x)^2 \, dx \, .$$

Let $Q = \{f \in P_2 \mid f(1) = 1\}$. Show that J attains a minimum value on Q and determine where the minimum occurs.

Problem 4 Let a > 0 be a constant $\neq 2$. Let C_a denote the positively oriented circle of radius a centered at the origin. Evaluate

$$\int_{C_a} \frac{z^2 + e^z}{z^2(z-2)} \, dz \, .$$

Problem 5 Let

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

be an analytic function in the open unit disc \mathbb{D} . Assume that

$$\sum_{n=2}^{\infty} n|a_n| \leqslant |a_1| \quad with \quad a_1 \neq 0.$$

Prove that f is injective.

Problem 6 G is a group of order n, H a proper subgroup of order m, and (n/m)! < 2n. Prove G has a proper normal subgroup different from the identity.

Problem 7 Let $n \ge 2$ be an integer such that $2^n + n^2$ is prime. Prove that

$$n \equiv 3 \pmod{6}$$
.

Problem 8 Let A and B be $n \times n$ complex matrices. Prove or disprove each of the following statements:

- 1. If A and B are diagonalizable, so is A + B.
- 2. If A and B are diagonalizable, so is AB.
- 3. If $A^2 = A$, then A is diagonalizable.
- 4. If A is invertible and A^2 is diagonalizable, then A is diagonalizable.

Problem 9 Let

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}.$$

Show that every real matrix B such that AB = BA has the form sI + tA, where $s, t \in \mathbb{R}$.

Problem 10 Consider the differential equation

$$x' = \frac{x^3 - x}{1 + e^x} \cdot$$

1. Find all its constant solutions.

2. Discuss $\lim_{t\to\infty} x(t)$, where x(t) is the solution such that $x(0) = \frac{1}{2}$.

Problem 11 Let $S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$ denote the unit sphere in \mathbb{R}^3 . Evaluate the surface integral over S:

$$\iint_{\mathcal{S}} (x^2 + y + z) \, dA \, .$$

Problem 12 Let $M_{3\times3}$ denote the vector space of real 3×3 matrices. For any matrix $A \in M_{3\times3}$, define the linear operator $L_A : M_{3\times3} \to M_{3\times3}$, $L_A(B) = AB$. Suppose that the determinant of A is 32 and the minimal polynomial is (t-4)(t-2). What is the trace of L_A ?

Problem 13 Let G be a subgroup of S_n the group of permutations of n objects. Assume G is transitive; that is, for any x and y in S, there is some $\sigma \in G$ with $\sigma(x) = y$.

- 1. Prove that n divides the order of G.
- 2. Suppose n = 4. For which integers $k \ge 1$ can such a G have order 4k?

Problem 14 Find a real matrix B such that

$$B^4 = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & -1 & 1 \end{pmatrix}$$

Problem 15 Show that a vector space over an infinite field cannot be the union of a finite number of proper subspaces.

Problem 16 Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be continuously differentiable. Assume the Jacobian matrix $(\partial f_i / \partial x_j)$ has rank *n* everywhere. Suppose *f* is proper; that is, $f^{-1}(K)$ is compact whenever *K* is compact. Prove $f(\mathbb{R}^n) = \mathbb{R}^n$.

Problem 17 S_9 is the group of permutations of 9 objects.

- 1. Exhibit an element of S_9 of order 20.
- 2. Prove that no element of S_9 has order 18.

Problem 18 For each $t \in \mathbb{R}$, let P(t) be a symmetric real $n \times n$ matrix whose entries are continuous functions of t. Suppose for all t that the eigenvalues of P(t) are all ≤ -1 . Let $x(t) = (x_1(t), \ldots, x_n(t))$ be a solution of the vector differential equation

$$\frac{dx}{dt} = P(t)x.$$

Prove that

$$\lim_{t\to\infty} x(t) = 0.$$

Problem 19 Let

$$f(z) = \sum_{n=0}^{\infty} c_n z^n$$

be analytic in the disc $\mathbb{D} = \{z \in \mathbb{C} \mid |z| < 1\}$. Assume f maps \mathbb{D} one-to-one onto a domain G having area A. Prove

$$A = \pi \sum_{n=1}^{\infty} n |c_n|^2.$$

Problem 20 Does there exist an analytic function mapping the annulus

$$A = \{ z \mid 1 \leqslant |z| \leqslant 4 \}$$

onto the annulus

$$B = \{ z \mid 1 \leqslant |z| \leqslant 2 \}$$

and taking $C_1 \to C_1, C_4 \to C_2$, where C_r is the circle of radius r?