Preliminary Exam - Spring 1981

Problem 1 Let \vec{i} , \vec{j} , and \vec{k} be the usual unit vectors in \mathbb{R}^3 . Let \vec{F} denote the vector field

$$(x^2 + y - 4)\vec{\imath} + 3xy\vec{\jmath} + (2xz + z^2)\vec{k}.$$

- 1. Compute $\nabla \times \vec{F}$ (the curl of \vec{F}).
- 2. Compute the integral of $\nabla \times \vec{F}$ over the surface $x^2 + y^2 + z^2 = 16$, $z \ge 0$.

Problem 2 Let T be a linear transformation of a vector space V into itself. Suppose $x \in V$ is such that $T^m x = 0$, $T^{m-1}x \neq 0$ for some positive integer m. Show that $x, Tx, \ldots, T^{m-1}x$ are linearly independent.

Problem 3 Let D be an ordered integral domain and $a \in D$. Prove that

$$a^2 - a + 1 > 0.$$

Problem 4 Consider the system of differential equations

$$\frac{dx}{dt} = y + x(1 - x^2 - y^2)
\frac{dy}{dt} = -x + y(1 - x^2 - y^2)$$

- 1. Show that for any x_0 and y_0 , there is a unique solution (x(t), y(t))defined for all $t \in \mathbb{R}$ such that $x(0) = x_0$, $y(0) = y_0$.
- 2. Show that if $x_0 \neq 0$ and $y_0 \neq 0$, the solution referred to in Part 1 approaches the circle $x^2 + y^2 = 1$ as $t \to \infty$.

Problem 5 Decompose $x^4 - 4$ and $x^3 - 2$ into irreducibles over \mathbb{R} , over \mathbb{Z} , and over \mathbb{Z}_3 (the integers modulo 3).

Problem 6 Suppose the complex polynomial

$$\sum_{k=0}^{n} a_k z^k$$

has n distinct roots $r_1, \ldots, r_n \in \mathbb{C}$. Prove that if $|b_k - a_k|$ is sufficiently small then

$$\sum_{k=0}^{n} b_k z^k$$

has n roots which are smooth functions of b_0, \ldots, b_n .

Problem 7 Evaluate

$$\int_{-\infty}^{\infty} \frac{x \sin x}{(1+x^2)^2} \, dx \, .$$

Problem 8 Let $f : [0,1] \to \mathbb{R}$ be continuous and $k \in \mathbb{N}$. Prove that there is a real polynomial P(x) of degree $\leq k$ which minimizes (for all such polynomials)

$$\sup_{0 \leqslant x \leqslant 1} |f(x) - P(x)|.$$

Problem 9 Show that the following three conditions are all equivalent for a real 3×3 symmetric matrix A, whose eigenvalues are λ_1 , λ_2 , and λ_3 :

- 1. $\operatorname{tr} A$ is not an eigenvalue of A.
- 2. $(a+b)(b+c)(a+c) \neq 0$.
- 3. The map $L: S \to S$ is an isomorphism, where S is the space of 3×3 real skew-symmetric matrices and L(W) = AW + WA.

Problem 10 1. Give an example of a sequence of C^1 functions

$$f_k: [0,\infty) \to \mathbb{R}, \quad k=0,1,2,\dots$$

such that $f_k(0) = 0$ for all k, and $f'_k(x) \to f'_0(x)$ for all x as $k \to \infty$, but $f_k(x)$ does not converge to $f_0(x)$ for all x as $k \to \infty$.

2. State an extra condition which would imply that $f_k(x) \to f_0(x)$ for all x as $k \to \infty$.

Problem 11 Evaluate

$$\int_C \frac{e^z - 1}{z^2(z - 1)} \, dz$$

where C is the closed curve shown below:

Problem 12 For $x \in \mathbb{R}$, let

$$A_x = \begin{pmatrix} x & 1 & 1 & 1 \\ 1 & x & 1 & 1 \\ 1 & 1 & x & 1 \\ 1 & 1 & 1 & x \end{pmatrix}.$$

- 1. Prove that $det(A_x) = (x-1)^3(x+3)$.
- 2. Prove that if $x \neq 1, -3$, then $A_x^{-1} = -(x-1)^{-1}(x+3)^{-1}A_{-x-2}$.

Problem 13 Which of the following series converges?

1.

$$\sum_{n=1}^{\infty} \frac{(2n)!(3n)!}{n!(4n)!}$$

2.

$$\sum_{n=1}^{\infty} \frac{1}{n^{1+1/n}} \, \cdot$$

Problem 14 The set of real 3×3 symmetric matrices is a real, finite-dimensional vector space isomorphic to \mathbb{R}^6 . Show that the subset of such matrices of signature (2, 1) is an open connected subspace in the usual topology on \mathbb{R}^6 .

Problem 15 Let \mathbf{M} be one of the following fields: \mathbb{R} , \mathbb{C} , \mathbb{Q} , and \mathbf{F}_9 (the field with nine elements). Let $\mathfrak{I} \subset \mathbf{M}[x]$ be the ideal generated by $x^4 + 2x - 2$. For which choices of \mathbf{M} is the ring $\mathbf{M}[x]/\mathfrak{I}$ a field?

Problem 16 Let f(x) be a real valued function defined for all $x \ge 1$, satisfying f(1) = 1 and

$$f'(x) = \frac{1}{x^2 + f(x)^2}.$$

Prove that

 $\lim_{x \to \infty} f(x)$

exists and is less than $1 + \frac{\pi}{4}$.

Problem 17 Let b be a real nonzero $n \times 1$ matrix (a column vector). Set $M = bb^t$ (an $n \times n$ matrix) where b^t denotes the transpose of b.

- 1. Prove that there is an orthogonal matrix Q such that $QMQ^{-1} = D$ is diagonal, and find D.
- 2. Describe geometrically the linear transformation $M : \mathbb{R}^n \to \mathbb{R}^n$.

Problem 18 Describe the two regions in (a, b)-space for which the function

$$f_{a,b}(x,y) = ay^2 + bx$$

restricted to the circle $x^2 + y^2 = 1$, has exactly two, and exactly four critical points, respectively.

Problem 19 Let G be a finite group. A conjugacy class is a set of the form

$$C(a) = \{bab^{-1} \mid b \in G\}$$

for some $a \in G$.

- 1. Prove that the number of elements in a conjugacy class divides the order of G.
- 2. Do all conjugacy classes have the same number of elements?
- 3. If G has only two conjugacy classes, prove G has order 2.

Problem 20 Let $f : [0,1] \to \mathbb{R}$ be continuous with f(0) = 0. Show there is a continuous concave function $g : [0,1] \to \mathbb{R}$ such that g(0) = 0 and $g(x) \ge f(x)$ for all $x \in [0,1]$. Note: A function $q : I \to \mathbb{R}$ is concave if

$$g\left(tx + (1-t)y\right) \ge tg(x) + (1-t)g(y)$$

for all x and y in I and $0 \leq t \leq 1$.