Preliminary Exam - Spring 1982

Problem 1 Prove the Fundamental Theorem of Algebra: Every nonconstant polynomial with complex coefficients has a complex root.

Problem 2 Let $S \subset \mathbb{R}^n$ be a subset which is uncountable. Prove that there is a sequence of distinct points in S converging to a point of S.

Problem 3 Let A and B be $n \times n$ complex matrices. Prove that

 $|\operatorname{tr}(AB^*)|^2 \leqslant \operatorname{tr}(AA^*)\operatorname{tr}(BB^*).$

Problem 4 Let $f : \mathbb{R}^2 \to \mathbb{R}$ have directional derivatives in all directions at the origin. Is f differentiable at the origin? Prove or give a counterexample.

Problem 5 Let $\{g_n\}$ be a sequence of twice differentiable functions on [0, 1] such that $g_n(0) = g'_n(0) = 0$ for all n. Suppose also that $|g''_n(x)| \leq 1$ for all n and all $x \in [0, 1]$. Prove that there is a subsequence of $\{g_n\}$ which converges uniformly on [0, 1].

Problem 6 Suppose that f(x) is a polynomial with real coefficients and a is a real number with $f(a) \neq 0$. Show that there exists a real polynomial g(x) such that if we define p by p(x) = f(x)g(x), we have p(a) = 1, p'(a) = 0, and p''(a) = 0.

Problem 7 Suppose that the group G is generated by elements x and y that satisfy $x^5y^3 = x^8y^5 = 1$. Is G the trivial group?

Problem 8 Find

$$\int_{-\infty}^{\infty} \frac{\cos x}{x^4 + 1} \, dx$$

by contour integration.

Problem 9 Find the Jordan Canonical Form for the matrix (over \mathbb{R})

$$\begin{pmatrix} 4 & 1 & 0 \\ -4 & 0 & 0 \\ 19 & 17 & 5 \end{pmatrix}.$$

Problem 10 Prove that any group of order 77 is cyclic.

Problem 11 Decide, without too much computation, whether a finite limit

$$\lim_{z \to 0} \left((\tan z)^{-2} - z^{-2} \right)$$

exists, where z is a complex variable, and if yes, compute the limit.

Problem 12 Prove or give a counterexample: Every connected, locally pathwise connected set in \mathbb{R}^n is pathwise connected.

Problem 13 Let $T : V \to W$ be a linear transformation between finitedimensional vector spaces. Prove that

 $\dim(\ker T) + \dim(\operatorname{range} T) = \dim V.$

Problem 14 Let $f : I \to \mathbb{R}$ (where I is an interval of \mathbb{R}) be such that $f(x) > 0, x \in I$. Suppose that $e^{cx}f(x)$ is convex in I for every real number c. Show that $\log f(x)$ is convex in I. Note: A function $g : I \to \mathbb{R}$ is convex if

$$g\left(tx + (1-t)y\right) \leqslant tg(x) + (1-t)g(y)$$

for all x and y in I and $0 \leq t \leq 1$.

Problem 15 How many nonsingular 2×2 matrices are there over the field of p elements?

Problem 16 Prove that if G is a group containing no subgroup of index 2, then any subgroup of index 3 is normal.

Problem 17 Let $\{f_n\}$ be a sequence of continuous functions from [0,1] to \mathbb{R} . Suppose that $f_n(x) \to 0$ as $n \to \infty$ for each $x \in [0,1]$ and also that, for some constant K, we have

$$\left|\int_{0}^{1} f_{n}(x) \, dx\right| \leqslant K < \infty$$

for all n. Does

$$\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = 0 \, ?$$

Problem 18 For $\Re z \ge 0$, define

$$F(z) = \int_0^\infty \frac{e^{-zt}}{1+t^4} \, dt.$$

Show that F(z) is continuous for $\Re z \ge 0$ and analytic for $\Re z > 0$.

Problem 19 Show that the initial value problem

$$y'(x) = 2 + 3\sin(y(x)), \quad y(0) = 4$$

has a solution defined for $-\infty < x < \infty$.

Problem 20 Prove that the polynomial $x^4 + x + 1$ is irreducible over \mathbb{Q} .