Preliminary Exam - Spring 1984

Problem 1 Evaluate

$$\int_0^\infty \frac{\log x}{a^2 + x^2} \, dx$$

for a > 0.

Problem 2 For a p-group of order p^4 , assume the center of G has order p^2 . Determine the number of conjugacy classes of G.

Problem 3 Let $f : [0,1] \to \mathbb{R}$ be continuous function, with f(0) = f(1) = 0. Assume that f'' exists on 0 < x < 1, with $f'' + 2f' + f \ge 0$. Show that $f(x) \le 0$ for all $0 \le x \le 1$.

Problem 4 Which number is larger, π^3 or 3^{π} ?

Problem 5 Let A and B be complex $n \times n$ matrices such that $AB = BA^2$, and assume A has no eigenvalues of absolute value 1. Prove that A and B have a common (nonzero) eigenvector.

Problem 6 Let a be a positive real number. Define a sequence (x_n) by

$$x_0 = 0, \quad x_{n+1} = a + x_n^2, \quad n \ge 0.$$

Find a necessary and sufficient condition on a in order that a finite limit $\lim_{n\to\infty} x_n$ should exist.

Problem 7 Find the number of roots of

$$z^7 - 4z^3 - 11 = 0$$

which lie between the two circles |z| = 1 and |z| = 2.

Problem 8 Show that the system of differential equations

$$\frac{d}{dt} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

has a solution which tends to ∞ as $t \to -\infty$ and tends to the origin as $t \to +\infty$.

Problem 9 Let A be a real $m \times n$ matrix with rational entries and let b be an m-tuple of rational numbers. Assume that the system of equations Ax = bhas a solution x in complex n-space \mathbb{C}^n . Show that the equation has a solution vector with rational components, or give a counterexample.

Problem 10 Let R be a principal ideal domain and let \mathfrak{I} and \mathfrak{J} be nonzero ideals in R. Show that $\mathfrak{I}\mathfrak{J} = \mathfrak{I} \cap \mathfrak{J}$ if and only if $\mathfrak{I} + \mathfrak{J} = R$.

Problem 11 Prove the following statement or supply a counterexample: If A and B are real $n \times n$ matrices which are similar over \mathbb{C} , then A and B are similar over \mathbb{R} .

Problem 12 Consider the equation

$$\frac{dy}{dx} = y - \sin y.$$

Show that there is an $\varepsilon > 0$ such that if $|y_0| < \varepsilon$, then the solution y = f(x) with $f(0) = y_0$ satisfies

$$\lim_{x \to -\infty} f(x) = 0$$

Problem 13 Let I be an open interval in \mathbb{R} containing zero. Assume that f' exists on a neighborhood of zero and f''(0) exists. Show that

$$f(x) = f(0) + f'(0)\sin x + \frac{1}{2}f''(0)\sin^2 x + o(x^2)$$

 $(o(x^2) \text{ denotes a quantity such that } \frac{o(x^2)}{x^2} \to 0 \text{ as } x \to 0).$

Problem 14 Let \mathbf{F} be a field and let X be a finite set. Let $R(X, \mathbf{F})$ be the ring of all functions from X to \mathbf{F} , endowed with the pointwise operations. What are the maximal ideals of $R(X, \mathbf{F})$?

Problem 15 Let F be a continuous complex valued function on the interval [0, 1]. Let

$$f(z) = \int_0^1 \frac{F(t)}{t-z} dt,$$

for z a complex number not in [0, 1].

- 1. Prove that f is an analytic function.
- 2. Express the coefficients of the Laurent series of f about ∞ in terms of F. Use the result to show that F is uniquely determined by f.

Problem 16 Prove, or supply a counterexample: If A is an invertible $n \times n$ complex matrix and some power of A is diagonal, then A can be diagonalized.

Problem 17 Prove that the Taylor coefficients at the origin of the function

$$f(z) = \frac{z}{e^z - 1}$$

are rational numbers.

Problem 18 Prove or supply a counterexample: If the function f from \mathbb{R} to \mathbb{R} has both a left limit and a right limit at each point of \mathbb{R} , then the set of discontinuities of f is, at most, countable.

Problem 19 Let $f(x) = x \log(1 + x^{-1}), 0 < x < \infty$.

- 1. Show that f is strictly monotonically increasing.
- 2. Compute $\lim f(x)$ as $x \to 0$ and $x \to \infty$.

Problem 20 Determine all finitely generated abelian groups G which have only finitely many automorphisms.