Preliminary Exam - Spring 1985

Problem 1 Let f(x), $0 \le x < \infty$, be continuous, differentiable, with f(0) = 0, and that f'(x) is an increasing function of x for $x \ge 0$. Prove that

$$g(x) = \begin{cases} f(x)/x, & x > 0\\ f'(0), & x = 0 \end{cases}$$

is an increasing function of x.

Problem 2 In a commutative group G, let the element a have order r, let b have order s $(r, s < \infty)$, and assume that the greatest common divisor of r and s is 1. Show that ab has order rs.

Problem 3 Show that a necessary and sufficient condition for three points a, b, and c in the complex plane to form an equilateral triangle is that

$$a^2 + b^2 + c^2 = bc + ca + ab.$$

Problem 4 Let R > 1 and let f be analytic on |z| < R except at z = 1, where f has a simple pole. If

$$f(z) = \sum_{n=0}^{\infty} a_n z^n \qquad (|z| < 1)$$

is the Maclaurin series for f, show that $\lim_{n\to\infty} a_n$ exists.

Problem 5 Factor $x^4 + x^3 + x + 3$ completely in $\mathbb{Z}_5[x]$.

Problem 6 Let A and B be two $n \times n$ self-adjoint (i.e., Hermitian) matrices over \mathbb{C} such that all eigenvalues of A lie in [a, a'] and all eigenvalues of B lie in [b, b']. Show that all eigenvalues of A + B lie in [a + b, a' + b'].

Problem 7 Prove that

$$\int_0^\infty e^{-x^2} \cos(2bx) \, dx = \frac{1}{2} \sqrt{\pi} e^{-b^2}.$$

What restrictions, if any, need be placed on b?

Problem 8 Let h > 0 be given. Consider the linear difference equation

$$\frac{y((n+2)h) - 2y((n+1)h) + y(nh)}{h^2} = -y(nh), \quad n = 0, 1, 2, \dots$$

(Note the analogy with the differential equation y'' = -y.)

- 1. Find the general solution of the equation by trying suitable exponential substitutions.
- 2. Find the solution with y(0) = 0 and y(h) = h. Denote it by $S_h(nh), n = 1, 2, \ldots$
- 3. Let x be fixed and $h = \frac{x}{n}$. Show that

$$\lim_{n \to \infty} S_{\frac{x}{n}} \left(\frac{nx}{n} \right) = \sin x \,.$$

Problem 9 Define the function ζ by

$$\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x} \cdot$$

Prove that $\zeta(x)$ is defined and has continuous derivatives of all orders in the interval $1 < x < \infty$.

Problem 10 For arbitrary elements a, b, and c in a field \mathbf{F} , compute the minimal polynomial of the matrix

$$\begin{pmatrix} 0 & 0 & a \\ 1 & 0 & b \\ 0 & 1 & c \end{pmatrix}.$$

Problem 11 Let $\mathbf{F} = \{a + b\sqrt[3]{2} + c\sqrt[3]{4} \mid a, b, c \in \mathbb{Q}\}$. Prove that \mathbf{F} is a field and each element in \mathbf{F} has a unique representation as $a + b\sqrt[3]{2} + c\sqrt[3]{4}$ with $a, b, c \in \mathbb{Q}$. Find $(1 - \sqrt[3]{2})^{-1}$ in \mathbf{F} .

Problem 12 Prove that

$$\int_0^\infty \frac{x^{\alpha - 1}}{1 + x} \, dx = \frac{\pi}{\sin \pi \alpha}.$$

What restrictions must be placed on α ?

Problem 13 Prove that for any $a \in \mathbb{C}$ and any integer $n \ge 2$, the equation $1 + z + az^n = 0$ has at least one root in the disc $|z| \le 2$.

Problem 14 Show that

$$I = \int_0^\pi \log(\sin x) \, dx$$

converges as an improper Riemann integral. Evaluate I.

Problem 15 Let $\zeta = e^{\frac{2\pi i}{7}}$ be a primitive 7th root of unity. Find a cubic polynomial with integer coefficients having $\alpha = \zeta + \zeta^{-1}$ as a root.

Problem 16 Let f be continuous on \mathbb{R} , and let

$$f_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} f\left(x + \frac{k}{n}\right).$$

Prove that $f_n(x)$ converges uniformly to a limit on every finite interval [a, b].

Problem 17 Let v_1 and v_2 be two real valued continuous functions on \mathbb{R} such that $v_1(x) < v_2(x)$ for all $x \in \mathbb{R}$. Let $\varphi_1(t)$ and $\varphi_2(t)$ be, respectively, solutions of the differential equations

$$\frac{dx}{dt} = v_1(x)$$
 and $\frac{dx}{dt} = v_2(x)$

for a < t < b. If $\varphi_1(t_0) = \varphi_2(t_0)$ for some $t_0 \in (a, b)$, show that $\varphi_1(t) \leq \varphi_2(t)$ for all $t \in (t_0, b)$.

Problem 18 Let A and B be two $n \times n$ self-adjoint (i.e., Hermitian) matrices over \mathbb{C} and assume A is positive definite. Prove that all eigenvalues of AB are real.

Problem 19 Let \mathbf{F} be a finite field. Give a complete proof of the fact that the number of elements of \mathbf{F} is of the form p^r , where $p \ge 2$ is a prime number and r is an integer ≥ 1 .

Problem 20 Let f(z) be an analytic function that maps the open disc |z| < 1 into itself. Show that $|f'(z)| \leq 1/(1-|z|^2)$.