Preliminary Exam - Spring 1987

Problem 1 A standard theorem states that a continuous real valued function on a compact set is bounded. Prove the converse: If K is a subset of \mathbb{R}^n and if every continuous real valued function on K is bounded, then K is compact.

Problem 2 Let the transformation T from the subset $U = \{(u, v) \mid u > v\}$ of \mathbb{R}^2 into \mathbb{R}^2 be defined by $T(u, v) = (u + v, u^2 + v^2)$.

- 1. Prove that T is locally one-to-one.
- 2. Determine the range of T, and show that T is globally one-to-one.

Problem 3 Let f be a complex valued function in the open unit disc, \mathbb{D} , of the complex plane such that the functions $g = f^2$ and $h = f^3$ are both analytic. Prove that f is analytic in \mathbb{D} .

Problem 4 Let \mathbf{F} be a finite field with q elements and let x be an indeterminate. For f a polynomial in $\mathbf{F}[x]$, let φ_f denote the corresponding function of \mathbf{F} into \mathbf{F} , defined by $\varphi_f(a) = f(a)$, $(a \in \mathbf{F})$. Prove that if φ is any function of \mathbf{F} into \mathbf{F} , then there is an f in $\mathbf{F}[x]$ such that $\varphi = \varphi_f$. Prove that f is uniquely determined by φ to within addition of a multiple of $x^q - x$.

Problem 5 Let f be a continuous real valued function on \mathbb{R} satisfying

$$|f(x)| \leqslant \frac{C}{1+x^2},$$

where C is a positive constant. Define the function F on \mathbb{R} by

$$F(x) = \sum_{n = -\infty}^{\infty} f(x+n) \,.$$

- 1. Prove that F is continuous and periodic with period 1.
- 2. Prove that if G is continuous and periodic with period 1, then

$$\int_0^1 F(x)G(x)\,dx = \int_{-\infty}^\infty f(x)G(x)\,dx\,.$$

Problem 6 Let f be an analytic function in the open unit disc of the complex plane such that $|f(z)| \leq C/(1-|z|)$ for all z in the disc, where C is a positive constant. Prove that $|f'(z)| \leq 4C/(1-|z|)^2$.

Problem 7 Let p, q and r be continuous real valued functions on \mathbb{R} , with p > 0. Prove that the differential equation

$$p(t)x''(t) + q(t)x'(t) + r(t)x(t) = 0$$

is equivalent to (i.e., has exactly the same solutions as) a differential equation of the form

$$(a(t)x'(t))' + b(t)x(t) = 0,$$

where a is continuously differentiable and b is continuous.

Problem 8 Prove that if the nonconstant polynomial p(z), with complex coefficients, has all of its roots in the half-plane $\Re z > 0$, then all of the roots of its derivative are in the same half-plane.

Problem 9 Let A be an $m \times n$ matrix with rational entries and b an mdimensional column vector with rational entries. Prove or disprove: If the equation Ax = b has a solution x in \mathbb{C}^n , then it has a solution with x in \mathbb{Q}^n .

Problem 10 Prove that any finite group of order n is isomorphic to a subgroup of $\mathbb{O}(n)$, the group of $n \times n$ orthogonal real matrices.

Problem 11 Show that the equation $ae^x = 1 + x + x^2/2$, where a is a positive constant, has exactly one real root.

Problem 12 Evaluate the integral

$$I = \int_0^{1/2} \frac{\sin x}{x} \, dx$$

to an accuracy of two decimal places; that is, find a number I^* such that $|I - I^*| < 0.005$.

Problem 13 Let f be a real valued C^1 function defined in the punctured plane $\mathbb{R}^2 \setminus \{(0,0)\}$. Assume that the partial derivatives $\partial f/\partial x$ and $\partial f/\partial y$ are uniformly bounded; that is, there exists a positive constant M such that $|\partial f/\partial x| \leq M$ and $|\partial f/\partial y| \leq M$ for all points $(x, y) \neq (0, 0)$. Prove that

$$\lim_{(x,y)\to(0,0)}f(x,y)$$

exists.

Problem 14 1. Show that, to within isomorphism, there is just one noncyclic group G of order 4.

2. Show that the group of automorphisms of G is isomorphic to the permutation group S_3 .

Problem 15 Prove or disprove: If the function f is analytic in the entire complex plane, and if f maps every unbounded sequence to an unbounded sequence, then f is a polynomial.

Problem 16 Let \mathcal{F} be a uniformly bounded, equicontinuous family of real valued functions on the metric space (X, d). Prove that the function

$$g(x) = \sup\{f(x) \mid f \in \mathcal{F}\}\$$

is continuous.

Problem 17 Let V be a finite-dimensional linear subspace of $C^{\infty}(\mathbb{R})$ (the space of complex valued, infinitely differentiable functions). Assume that V is closed under D, the operator of differentiation (i.e., $f \in V \Rightarrow Df \in V$). Prove that there is a constant coefficient differential operator

$$L = \sum_{k=0}^{n} a_k D^k$$

such that V consists of all solutions of the differential equation Lf = 0.

Problem 18 Let A and B be two diagonalizable $n \times n$ complex matrices such that AB = BA. Prove that there is a basis for \mathbb{C}^n that simultaneously diagonalizes A and B.

Problem 19 Let \mathbf{F} be a field. Prove that every finite subgroup of the multiplicative group of nonzero elements of \mathbf{F} is cyclic.

Problem 20 Evaluate

$$I = \int_0^\pi \frac{\cos 4\theta}{1 + \cos^2 \theta} \, d\theta \, .$$