Preliminary Exam - Spring 1988

Problem 1 Suppose that f(x), $-\infty < x < \infty$, is a continuous real valued function, that f'(x) exists for $x \neq 0$, and that $\lim_{x \to 0} f'(x)$ exists. Prove that f'(0) exists.

Problem 2 Determine the last digit of

 $23^{23^{23^{23^{23}}}}$

in the decimal system.

Problem 3 If a finite homogeneous system of linear equations with rational coefficients has a nontrivial complex solution, need it have a nontrivial rational solution? Give a proof or a counterexample.

Problem 4 True or false: A function f(z) analytic on |z - a| < r and continuous on $|z - a| \leq r$ extends, for some $\delta > 0$, to a function analytic on $|z - a| < r + \delta$? Give a proof or a counterexample.

Problem 5 Let D be a group of order 2n, where n is odd, with a subgroup H of order n satisfying $xhx^{-1} = h^{-1}$ for all h in H and all x in $D \setminus H$. Prove that H is commutative and that every element of $D \setminus H$ is of order 2.

Problem 6 Prove or disprove: There is a real $n \times n$ matrix A such that

$$A^2 + 2A + 5I = 0$$

if and only if n is even.

Problem 7 Let R be a commutative ring with identity element and $a \in R$. Let n and m be positive integers, and write $d = \gcd\{n, m\}$. Prove that the ideal of R generated by $a^n - 1$ and $a^m - 1$ is the same as the ideal generated by $a^d - 1$.

Problem 8 For a > 1 and n = 0, 1, 2, ..., evaluate the integrals

$$C_n(a) = \int_{-\pi}^{\pi} \frac{\cos n\theta}{a - \cos \theta} \, d\theta \,, \qquad S_n(a) = \int_{-\pi}^{\pi} \frac{\sin n\theta}{a - \cos \theta} \, d\theta \,.$$

Problem 9 Prove that the integrals

$$\int_0^\infty \cos x^2 \, dx \quad and \quad \int_0^\infty \sin x^2 \, dx$$

converge.

- **Problem 10** 1. Let G be an open connected subset of the complex plane, f an analytic function in G, not identically 0, and n a positive integer. Assume that f has an analytic n^{th} root in G; that is, there is an analytic function g in G such that $g^n = f$. Prove that f has exactly n analytic n^{th} roots in G.
 - 2. Give an example of a continuous real valued function on [0, 1] that has more than two continuous square roots on [0, 1].

Problem 11 Let S_9 denote the group of permutations of nine objects and let A_9 be the subgroup consisting of all even permutations. Denote by $1 \in S_9$ the identity permutation. Determine the minimum of all positive integers m such that every $\sigma \in S_9$ satisfies $\sigma^m = 1$. Determine also the minimum of all positive integers m such that every $\sigma \in A_9$ satisfies $\sigma^m = 1$.

Problem 12 For each real value of the parameter t, determine the number of real roots, counting multiplicities, of the cubic $polynomialp_t(x) = (1 + t^2)x^3 - 3t^3x + t^4$.

Problem 13 Find all groups G such that every automorphism of G is trivial.

Problem 14 Let the function f be analytic in the open unit disc of the complex plane and real valued on the radii [0,1) and $[0,e^{i\pi\sqrt{2}})$. Prove that f is constant.

Problem 15 Compute A^{10} for the matrix

$$A = \begin{pmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ -1 & -1 & 1 \end{pmatrix}.$$

Problem 16 Let X be a set and V a real vector space of real valued functions on X of dimension n, $0 < n < \infty$. Prove that there are n points x_1, x_2, \ldots, x_n in X such that the map $f \mapsto (f(x_1), \ldots, f(x_n))$ of V to \mathbb{R}^n is an isomorphism.

- **Problem 17** 1. Let f be an analytic function that maps the open unit disc, \mathbb{D} , into itself and vanishes at the origin. Prove that $|f(z)+f(-z)| \leq 2|z|^2$ in \mathbb{D} .
 - 2. Prove that the inequality in Part 1 is strict, except at the origin, unless f has the form $f(z) = \lambda z^2$ with λ a constant of absolute value one.

Problem 18 For which positive integers n is there a 2×2 matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

with integer entries and order n; that is, $A^n = I$ but $A^k \neq I$ for 0 < k < n? Note: See also Problem ??.

Problem 19 Show that one can represent the set of nonnegative integers, \mathbb{Z}_+ , as the union of two disjoint subsets N_1 and N_2 ($N_1 \cap N_2 = \emptyset$, $N_1 \cup N_2 = \mathbb{Z}_+$) such that neither N_1 nor N_2 contains an infinite arithmetic progression.

Problem 20 Does there exist a continuous real valued function f(x), $0 \le x \le 1$, such that

$$\int_{0}^{1} xf(x) \, dx = 1 \quad and \quad \int_{0}^{1} x^{n} f(x) \, dx = 0$$

for $n = 0, 2, 3, 4, \ldots$? Give an example or a proof that no such f exists.