Preliminary Exam - Spring 1989

Problem 1 Let a_1, a_2, \ldots be positive numbers such that

$$\sum_{n=1}^{\infty} a_n < \infty$$

Prove that there are positive numbers c_1, c_2, \ldots such that

$$\lim_{n \to \infty} c_n = \infty \quad and \quad \sum_{n=1}^{\infty} c_n a_n < \infty \,.$$

Problem 2 Let \mathbf{F} be a field, n and m positive integers, and A an $n \times n$ matrix with entries in \mathbf{F} such that $A^m = 0$. Prove that $A^n = 0$.

Problem 3 Let f be a continuous real valued function defined on $[0,1] \times [0,1]$. Let the function g on [0,1] be defined by

$$g(x) = \max \{ f(x, y) \mid y \in [0, 1] \}.$$

Prove that g is continuous.

Problem 4 Prove that if $1 < \lambda < \infty$, the function

$$f_{\lambda}(z) = z + \lambda - e^{z}$$

has only one zero in the half-plane $\Re z < 0$, and this zero is on the real axis.

Problem 5 Let G be a group whose order is twice an odd number. For g in G, let λ_g denote the permutation of G given by $\lambda_g(x) = gx$ for $x \in G$.

- 1. Let g be in G. Prove that the permutation λ_g is even if and only if the order of g is odd.
- 2. Let $N = \{g \in G \mid \text{order}(g) \text{ is odd}\}$. Prove that N is a normal subgroup of G of index 2.

Problem 6 Let S be the subspace of $M_{n \times n}$ (the vector space of all real $n \times n$ matrices) generated by all matrices of the form AB - BA with A and B in $M_{n \times n}$. Prove that dim $(S) = n^2 - 1$.

Problem 7 Let

$$A = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Find the general solution of the matrix differential equation $\frac{dX}{dt} = AXB$ for the unknown 4×4 matrix function X(t).

Problem 8 Let f be an analytic function mapping the open unit disc, D, into itself. Assume that there are two points a and b in D, with $a \neq b$, such that f(a) = a and f(b) = b. Prove that f is the identity function (f(z) = z).

Problem 9 For G a group and H a subgroup, let C(G, H) denote the collection of left cosets of H in G. Prove that if H and K are two subgroups of G of infinite index, then G is not a finite union of cosets from $C(G, H) \cup C(G, K)$.

Problem 10 Let the real $2n \times 2n$ matrix X have the form

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

where A, B, C, and D are $n \times n$ matrices that commute with one another. Prove that X is invertible if and only if AD - BC is invertible.

Problem 11 Let R be a ring with at least two elements. Suppose that for each nonzero a in R there is a unique b in R (depending on a) with aba = a. Show that R is a division ring.

Problem 12 Evaluate

$$\int_C (2z - 1)e^{z/(z-1)} \, dz$$

where C is the circle |z| = 2 with counterclockwise orientation.

Problem 13 Let D_n be the dihedral group, the group of rigid motions of a regular n-gon $(n \ge 3)$. (It is a noncommutative group of order 2n.) Determine its center $Z = \{c \in D_n \mid cx = xc \text{ for all } x \in D_n\}$.

Problem 14 Suppose f is a continuously differentiable map of \mathbb{R}^2 into \mathbb{R}^2 . Assume that f has only finitely many singular points, and that for each positive number M, the set $\{z \in \mathbb{R}^2 \mid |f(z)| \leq M\}$ is bounded. Prove that fmaps \mathbb{R}^2 onto \mathbb{R}^2 .

Problem 15 Let $B = (b_{ij})_{i,j=1}^{20}$ be a real 20×20 matrix such that

 $b_{ii} = 0 \quad for \quad 1 \leq i \leq 20,$ $b_{ij} \in \{1, -1\} \quad for \quad 1 \leq i, j \leq 20, \quad i \neq j.$

Prove that B is nonsingular.

Problem 16 Let f and g be entire functions such that $\lim_{z\to\infty} f(g(z)) = \infty$. Prove that f and g are polynomials.

- **Problem 17** 1. Let R be a commutative ring with identity containing an element a with $a^3 = a + 1$. Further, let \Im be an ideal of R of A of A
 - 2. Show that there exists a commutative ring with identity that has an element a with $a^3 = a + 1$ and that contains an ideal of index 5.

Note: The term index is used here exactly as in group theory; namely the index of \mathfrak{I} in R means the order of R/\mathfrak{I} .

Problem 18 Let f be a real valued function on \mathbb{R}^2 with the following properties:

- 1. For each y_0 in \mathbb{R} , the function $x \mapsto f(x, y_0)$ is continuous.
- 2. For each x_0 in \mathbb{R} , the function $y \mapsto f(x_0, y)$ is continuous.
- 3. f(K) is compact whenever K is a compact subset of \mathbb{R}^2 .

Prove that f is continuous.