Preliminary Exam - Spring 1990

Problem 1 Let $y : \mathbb{R} \to \mathbb{R}$ be a C^{∞} function that satisfies the differential equation

$$y'' + y' - y = 0$$

for $x \in [0, L]$, where L is a positive real number. Suppose that y(0) = y(L) = 0. Prove that $y \equiv 0$ on [0, L].

Problem 2 Let A be a complex $n \times n$ matrix that has finite order; that is, $A^k = I$ for some positive integer k. Prove that A is diagonalizable.

Problem 3 Let $c_0, c_1, \ldots, c_{n-1}$ be complex numbers. Prove that all the zeros of the polynomial

$$z^{n} + c_{n-1}z^{n-1} + \dots + c_{1}z + c_{0}$$

lie in the open disc with center 0 and radius

$$\sqrt{1+|c_{n-1}|^2+\cdots+|c_1|^2+|c_0|^2}$$
.

Problem 4 Let R be a commutative ring with 1, and R^* be its group of units. Suppose that the additive group of R is generated by $\{u^2 \mid u \in R^*\}$. Prove that R has, at most, one ideal \Im for which R/\Im has cardinality 3.

Problem 5 Suppose x_1, x_2, x_3, \ldots is a sequence of nonnegative real numbers satisfying

$$x_{n+1} \leqslant x_n + \frac{1}{n^2}$$

for all $n \ge 1$. Prove that $\lim_{n \to \infty} x_n$ exists.

Problem 6 Give an example of a continuous function $v : \mathbb{R} \to \mathbb{R}^3$ with the property that $v(t_1)$, $v(t_2)$, and $v(t_3)$ form a basis for \mathbb{R}^3 whenever t_1 , t_2 , and t_3 are distinct points of \mathbb{R} .

Problem 7 Let a be a positive real number. Evaluate the improper integral

$$\int_0^\infty \frac{\sin x}{x(x^2 + a^2)} \, dx \, dx$$

Problem 8 Let \mathbb{C}^* be the multiplicative group of nonzero complex numbers. Suppose that H is a subgroup of finite index of \mathbb{C}^* . Prove that $H = \mathbb{C}^*$.

Problem 9 Let the real valued function f on [0, 1] have the following two properties:

- If [a, b] ⊂ [0, 1], then f ([a, b]) contains the interval with endpoints f(a) and f(b) (i.e., f has the Intermediate Value Property).
- For each $c \in \mathbb{R}$, the set $f^{-1}(c)$ is closed.

Prove that f is continuous.

Problem 10 Show that there are at least two nonisomorphic nonabelian groups of order 24, of order 30 and order 40.

Problem 11 Let the function f be analytic and bounded in the complex halfplane $\Re z > 0$. Prove that for any positive real number c, the function f is uniformly continuous in the half-plane $\Re z > c$.

Problem 12 Let *n* be a positive integer, and let $A = (a_{ij})_{i,j=1}^n$ be the $n \times n$ matrix with $a_{ii} = 2$, $a_{i\,i\pm 1} = -1$, and $a_{ij} = 0$ otherwise; that is,

	$\binom{2}{2}$	-1	0	0	•••	0	0	0	
A =	-1	2	-1	0	• • •	0	0	0	
	0	-1	2	-1	•••	0	0	0	
	0	0	-1		•••	0	0	0	
	:	:	÷	÷	·	÷	÷	÷	•
	0	0	0	0	• • •	2	-1	0	
	0	0	0	0	• • •	-1	2	-1	
	0	0	0	0	•••	0	-1	2 /	

Prove that every eigenvalue of A is a positive real number.

Problem 13 Let f be an infinitely differentiable function from \mathbb{R} to \mathbb{R} . Suppose that, for some positive integer n,

$$f(1) = f(0) = f'(0) = f''(0) = \dots = f^{(n)}(0) = 0.$$

Prove that $f^{(n+1)}(x) = 0$ for some x in (0, 1).

Problem 14 Let A and B be subspaces of a finite-dimensional vector space V such that A + B = V. Write $n = \dim V$, $a = \dim A$, and $b = \dim B$. Let S be the set of those endomorphisms f of V for which $f(A) \subset A$ and $f(B) \subset B$. Prove that S is a subspace of the set of all endomorphisms of V, and express the dimension of S in terms of n, a, and b.

Problem 15 Find a one-to-one conformal map of the semidisc

$$\left\{ z \in \mathbb{C} \mid \Im z > 0, \left| z - \frac{1}{2} \right| < \frac{1}{2} \right\}$$

onto the upper half-plane.

Problem 16 Determine the greatest common divisor of the elements of the set $\{n^{13} - n \mid n \in \mathbb{Z}\}$.

Problem 17 Let f be a differentiable function on [0, 1] and let

.

$$\sup_{0 < x < 1} |f'(x)| = M < \infty.$$

Let n be a positive integer. Prove that

$$\left|\sum_{j=0}^{n-1} \frac{f(j/n)}{n} - \int_0^1 f(x) \, dx\right| \leqslant \frac{M}{2n} \cdot$$

Problem 18 Let $z_1, z_2, ..., z_n$ be complex numbers. Prove that there exists a subset $J \subset \{1, 2, ..., n\}$ such that

$$\left|\sum_{j\in J} z_j\right| \ge \frac{1}{4\sqrt{2}} \sum_{j=1}^n |z_j|.$$