Preliminary Exam - Spring 1991

Problem 1 List, to within isomorphism, all the finite groups whose orders do not exceed 5.

Problem 2 Let f be a continuous complex valued function on [0, 1], and define the function g by

$$g(z) = \int_0^1 f(t)e^{tz} dt \qquad (z \in \mathbb{C}).$$

Prove that g is analytic in the entire complex plane.

Problem 3 For n a positive integer, let d(n) denote the number of positive integers that divide n. Prove that d(n) is odd if and only if n is a perfect square.

Problem 4 Let p be a prime number and R a ring with identity containing p^2 elements. Prove that R is commutative.

Problem 5 Let $A = (a_{ij})_{i,j=1}^r$ be a square matrix with integer entries.

- 1. Prove that if an integer n is an eigenvalue of A, then n is a divisor of det A, the determinant of A.
- 2. Suppose that n is an integer and that each row of A has sum n:

$$\sum_{j=1}^{r} a_{ij} = n, \qquad 1 \leqslant i \leqslant r.$$

Prove that n is a divisor of det A.

Problem 6 Let the vector field F in \mathbb{R}^3 have the form

$$F(r) = g(||r||)r \qquad (r \neq (0, 0, 0))$$

where g is a real valued smooth function on $(0, \infty)$ and $\|\cdot\|$ denotes the Euclidean norm. (F is undefined at (0, 0, 0).) Prove that

$$\int_C F \cdot ds = 0$$

for any smooth closed path C in \mathbb{R}^3 that does not pass through the origin.

Problem 7 Let the function f be analytic in the unit disc, with $|f(z)| \leq 1$ and f(0) = 0. Assume that there is a number r in (0, 1) such that f(r) = f(-r) = 0. Prove that

$$|f(z)| \leq |z| \left| \frac{z^2 - r^2}{1 - r^2 z^2} \right|$$

Problem 8 Let T be a real, symmetric, $n \times n$, tridiagonal matrix:

	(a_1)	b_1	0	0	•••	0	0
T =	b_1	a_2	b_2	0	• • •	0	0
	0	b_2	a_3	b_3	•••	0	0
	:	÷	÷	÷	·	÷	$ \begin{array}{c} 0\\ 0\\ 0\\ \vdots \end{array} $
	0	0	0	0	•••	a_{n-1}	$\begin{pmatrix} b_{n-1} \\ a_n \end{pmatrix}$
	0	0	0	0	•••	b_{n-1}	a_n

(All entries not on the main diagonal or the diagonals just above and below the main one are zero.) Assume $b_j \neq 0$ for all j.

Prove:

- 1. rank $T \ge n-1$.
- 2. T has n distinct eigenvalues.

Problem 9 Let f be a continuous function from the $ballB_n = \{x \in \mathbb{R}^n \mid ||x|| < 1\}$ into itself. (Here, $||\cdot||$ denotes the Euclidean norm.) Assume ||f(x)|| < ||x|| for all nonzero $x \in B_n$. Let x_0 be a nonzero point of B_n , and define the sequence (x_k) by setting $x_k = f(x_{k-1})$. Prove that $\lim x_k = 0$.

Problem 10 Prove that \mathbb{Q} , the additive group of rational numbers, cannot be written as the direct sum of two nontrivial subgroups. Note: See also Problems ?? and ??.

Problem 11 For which real numbers x does the infinite series

$$\sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n}}{n^x}$$

converge?

Problem 12 Let A be the set of positive integers that do not contain the digit 9 in their decimal expansions. Prove that

$$\sum_{a \in A} \frac{1}{a} < \infty;$$

that is, A defines a convergent subseries of the harmonic series.

Problem 13 Prove that

$$\lim_{R \to \infty} \int_{-R}^{R} \frac{\sin x}{x - 3i} \, dx$$

exists and find its value.

Problem 14 Let x(t) be a nontrivial solution to the system

$$\frac{dx}{dt} = Ax,$$

where

$$A = \begin{pmatrix} 1 & 6 & 1 \\ -4 & 4 & 11 \\ -3 & -9 & 8 \end{pmatrix}.$$

Prove that ||x(t)|| is an increasing function of t. (Here, $|| \cdot ||$ denotes the Euclidean norm.)

Problem 15 Let G be a finite nontrivial group with the property that for any two elements a and b in G different from the identity, there is an element c in G such that $b = c^{-1}ac$. Prove that G has order 2.

Problem 16 Let A be a linear transformation on an n-dimensional vector space over \mathbb{C} with characteristic polynomial $(x-1)^n$. Prove that A is similar to A^{-1} .

Problem 17 Let the function f be analytic in the punctured disc $0 < |z| < r_0$, with Laurent series

$$f(z) = \sum_{-\infty}^{\infty} c_n z^n.$$

Assume there is a positive number M such that

$$r^4 \int_0^{2\pi} |f(re^{i\theta})|^2 \, d\theta < M, \qquad 0 < r < r_0.$$

Prove that $c_n = 0$ for n < -2.

Problem 18 Let the real valued function f be defined in an open interval about the point a on the real line and be differentiable at a. Prove that if (x_n) is an increasing sequence and (y_n) is a decreasing sequence in the domain of f, and both sequences converge to a, then

$$\lim_{n \to \infty} \frac{f(y_n) - f(x_n)}{y_n - x_n} = f'(a).$$