Preliminary Exam - Spring 1992

Problem 1 1. Prove that every finitely generated subgroup of \mathbb{Q} , the additive group of rational numbers, is cyclic.

 Does the same conclusion hold for finitely generated subgroups of Q /Z, where Z is the group of integers?

Problem 2 Find a square root of the matrix

$$\begin{pmatrix} 1 & 3 & -3 \\ 0 & 4 & 5 \\ 0 & 0 & 9 \end{pmatrix}.$$

How many square roots does this matrix have?

Problem 3 Let f be an analytic function in the connected open subset G of the complex plane. Assume that for each point z in G, there is a positive integer n such that the nth derivative of f vanishes at z. Prove that f is a polynomial.

Problem 4 Show that every infinite closed subset of \mathbb{R}^n is the closure of a countable set.

Problem 5 Let f be a differentiable function from \mathbb{R}^n to \mathbb{R}^n . Assume that there is a differentiable function g from \mathbb{R}^n to \mathbb{R} having no critical points such that $g \circ f$ vanishes identically. Prove that the Jacobian determinant of f vanishes identically.

Problem 6 Let p be a prime integer, $p \equiv 3 \pmod{4}$, and let $\mathbf{F}_p = \mathbb{Z}/p\mathbb{Z}$. If $x^4 + 1$ factors into a product g(x)h(x) of two quadratic polynomials in $\mathbf{F}_p[x]$, prove that g(x) and h(x) are both irreducible over \mathbf{F}_p .

Problem 7 Let a_1, a_2, \ldots, a_{10} be integers with $1 \le a_i \le 25$, for $1 \le i \le 10$. Prove that there exist integers n_1, n_2, \ldots, n_{10} , not all zero, such that

$$\prod_{i=1}^{10} a_i^{n_i} = 1$$

Problem 8 Evaluate the integral

$$I = \int_{-\infty}^{\infty} \frac{\sin^3 x}{x^3} \, dx \, .$$

Problem 9 Let p be a nonconstant polynomial with real coefficients and only real roots. Prove that for each real number r, the polynomial p - rp' has only real roots.

Problem 10 Let A denote the matrix

For which positive integers n is there a complex 4×4 matrix X such that $X^n = A$?

Problem 11 Find a Laurent series that converges in the annulus 1 < |z| < 2 to a branch of the function $\log\left(\frac{z(2-z)}{1-z}\right)$.

Problem 12 Let A be a real symmetric $n \times n$ matrix with nonnegative entries. Prove that A has an eigenvector with nonnegative entries.

Problem 13 Let f be a one-to-one C^1 map of \mathbb{R}^3 into \mathbb{R}^3 , and let J denote its Jacobian determinant. Prove that if x_0 is any point of \mathbb{R}^3 and $Q_r(x_0)$ denotes the cube with center x_0 , side length r, and edges parallel to the coordinate axes, then

$$|J(x_0)| = \lim_{r \to 0} r^{-3} \operatorname{vol}\left(f(Q_r(x_0))\right) \leq \limsup_{x \to x_0} \frac{\|f(x) - f(x_0)\|^3}{\|x - x_0\|^3}.$$

Here, $\|\cdot\|$ is the Euclidean norm in \mathbb{R}^3 .

- **Problem 14** 1. Prove that $\alpha = \sqrt{5} + \sqrt{7}$ is algebraic over \mathbb{Q} , by explicitly finding a polynomial f(x) in $\mathbb{Q}[x]$ of degree 4 having α as a root.
 - 2. Prove that f(x) is irreducible over \mathbb{Q} .

Problem 15 Let S_{999} denote the group of permutations of 999 objects, and let $G \subset S_{999}$ be an abelian subgroup of order 1111. Prove that there exists $i \in \{1, \ldots, 999\}$ such that for all $\sigma \in G$, one has $\sigma(i) = i$.

Problem 16 Let $x_0 = 1$ and

$$x_{n+1} = \frac{3+2x_n}{3+x_n}, \qquad n \ge 0.$$

Prove that $x_{\infty} = \lim_{n \to \infty} x_n$ exists, and find its value.

Problem 17 For which positive numbers a and b, with a > 1, does the equation $\log_a x = x^b$ have a positive solution for x?

Problem 18 Let the function f be analytic in the entire complex plane, real valued on the real axis, and of positive imaginary part in the upper half-plane. Prove f'(x) > 0 for x real.