Preliminary Exam - Spring 1993

Problem 1 Let (a_n) and (ε_n) be sequences of positive numbers. Assume that $\lim_{n\to\infty} \varepsilon_n = 0$ and that there is a number k in (0,1) such that $a_{n+1} \leq ka_n + \varepsilon_n$ for every n. Prove that $\lim_{n\to\infty} a_n = 0$.

Problem 2 Let $A = (a_{ij})$ be an $n \times n$ matrix such that $\sum_{j=1}^{n} |a_{ij}| < 1$ for each *i*. Prove that I - A is invertible.

Problem 3 Evaluate

$$\int_{-\infty}^{\infty} \frac{x^3 \sin x}{(1+x^2)^2} \, dx$$

Problem 4 Suppose that the group G is generated by elements x and y that satisfy $x^5y^3 = x^8y^5 = 1$. Does it follow that G is the trivial group?

Problem 5 Let k be a positive integer. For which values of the real number c does the differential equation

$$\frac{d^2x}{dt^2} - 2c\frac{dx}{dt} + x = 0$$

have a solution satisfying $x(0) = x(2\pi k) = 0$?

Problem 6 Find a list of real matrices, as long as possible, such that

- the characteristic polynomial of each matrix is $(x-1)^5(x+1)$,
- the minimal polynomial of each matrix is $(x-1)^2(x+1)$,
- no two matrices in the list are similar to each other.

Problem 7 Let $f_n : [0,4] \to \mathbb{R}$ (n = 1, 2, ...) be continuous functions that are twice continuously differentiable on (0,4) and satisfy

- $f_n(1) = f'_n(1) = 0;$
- $|f'_n(x)| \leq C$ for all x in (0,4), where C is a constant, independent of n.

Prove that the sequence $\{f_n\}$ has a uniformly convergent subsequence.

Problem 8 Classify up to isomorphism all groups of order 45.

Problem 9 Let a be a complex number and ε a positive number. Prove that the function $f(z) = \sin z + \frac{1}{z-a}$ has infinitely many zeros in the strip $|\Im z| < \varepsilon$.

Problem 10 Let f be a real valued C^1 function on $[0, \infty)$ such that the improper integral $\int_1^\infty |f'(x)| dx$ converges. Prove that the infinite series $\sum_{n=1}^\infty f(n)$ converges if and only if the integral $\int_1^\infty f(x) dx$ converges.

Problem 11 Let P be the vector space of polynomials over \mathbb{R} . Let the linear transformation $E: P \to P$ be defined by Ef = f + f', where f' is the derivative of f. Prove that E is invertible.

Problem 12 Prove that for any fixed complex number ζ ,

$$\frac{1}{2\pi} \int_0^{2\pi} e^{2\zeta \cos \theta} d\theta = \sum_{n=0}^\infty \left(\frac{\zeta^n}{n!}\right)^2 \cdot$$

Problem 13 Prove that no commutative ring with identity has additive group isomorphic to \mathbb{Q}/\mathbb{Z} .

Problem 14 Prove that every solution x(t) $(t \ge 0)$ of the differential equation

$$\frac{dx}{dt} = x^2 - x^6$$

with x(0) > 0 satisfies $\lim_{t \to \infty} x(t) = 1$.

Problem 15 Let Λ be the set of 2×2 matrices of the form

$$\left(\begin{array}{cc}a & -b\\b & a\end{array}\right)\,,$$

where a and b are elements of a given field \mathbf{F} . Prove that Λ , with the usual matrix operations, is a commutative ring with identity. For which of the following fields \mathbf{F} is Λ a field? $\mathbf{F} = \mathbb{Q}$, \mathbb{C} , \mathbb{Z}_5 , \mathbb{Z}_7 .

Problem 16 Prove that $\frac{x^2 + y^2}{4} \leq e^{x+y-2}$ for $x \geq 0$, $y \geq 0$.

Problem 17 Prove that if G is a group containing no subgroup of index 2, then any subgroup of index 3 in G is a normal subgroup.

Problem 18 Let f be an analytic function in the unit disc, |z| < 1.

- 1. Prove that there is a sequence (z_n) in the unit disc with $\lim_{n\to\infty} |z_n| = 1$ and $\lim_{n\to\infty} f(z_n)$ exists (finitely).
- 2. Assume f nonconstant. Prove that there are two sequences (z_n) and (w_n) in the disc such that $\lim_{n\to\infty} |z_n| = \lim_{n\to\infty} |w_n| = 1$, and such that both limits $\lim_{n\to\infty} f(z_n)$ and $\lim_{n\to\infty} f(w_n)$ exist (finitely) and are not equal.