Preliminary Exam - Spring 1996

Problem 1 Compute

$$L = \lim_{n \to \infty} \left(\frac{n^n}{n!} \right)^{1/n}.$$

Problem 2 Let $K \subset \mathbb{R}^n$ be compact and $\{B_j\}_{j=1}^{\infty}$ be a sequence of open balls which covers K. Prove that there is $\varepsilon > 0$ such that every ε -ball centered at a point of K is contained in one of the balls B_j .

Problem 3 Compute

$$I = \int_0^{2\pi} \frac{d\theta}{2 + \cos \theta}.$$

Problem 4 Let r < 1 < R. Show that for all sufficiently small $\varepsilon > 0$, the polynomial

$$p(z) = \varepsilon z^7 + z^2 + 1$$

has exactly five roots (counted with their multiplicities) inside the annulus

$$r\varepsilon^{-1/5} < |z| < R\varepsilon^{-1/5}$$
.

Problem 5 Prove or disprove: For any 2×2 matrix A over \mathbb{C} , there is a 2×2 matrix B such that $A=B^2$.

Problem 6 If a finite homogeneous system of linear equations with rational coefficients has a nonzero complex solution, need it have a nonzero rational solution? Prove or give a counterexample.

Problem 7 Prove that $f(x) = x^4 + x^3 + x^2 + 6x + 1$ is irreducible over \mathbb{Q} .

Problem 8 Determine the rightmost decimal digit of

$$A = 17^{17^{17}}.$$

Problem 9 Exhibit infinitely many pairwise nonisomorphic quadratic extensions of \mathbb{Q} and show they are pairwise nonisomorphic.

Problem 10 Show that a positive constant t can satisfy

$$e^x > x^t$$
 for all $x > 0$

if and only if t < e.

Problem 11 Suppose φ is a C^1 function on \mathbb{R} such that

$$\varphi(x) \to a \quad and \quad \varphi'(x) \to b \quad as \quad x \to \infty.$$

Prove or give a counterexample: b must be zero.

Problem 12 Let $M_{2\times 2}$ be the space of 2×2 matrices over \mathbb{R} , identified in the usual way with \mathbb{R}^4 . Let the function F from $M_{2\times 2}$ into $M_{2\times 2}$ be defined by

$$F(X) = X + X^2.$$

Prove that the range of F contains a neighborhood of the origin.

Problem 13 Let f = u + iv be analytic in a connected open set D, where u and v are real valued. Suppose there are real constants a, b and c such that $a^2 + b^2 \neq 0$ and

$$au + bv = c$$

in D. Show that f is constant in D.

Problem 14 Suppose $f:[0,1] \to \mathbb{C}$ is continuous. Show that

$$g(z) = \int_0^1 f(t)e^{tz^2}dt$$

defines a function g that is analytic everywhere in the complex plane.

Problem 15 Suppose that A and B are real matrices such that $A^t = A$,

$$v^t A v \geqslant 0$$

for all $v \in \mathbb{R}^n$ and

$$AB + BA = 0.$$

Show that AB = BA = 0 and give an example where neither A nor B is zero.

Problem 16 Let A be the $n \times n$ matrix which has zeros on the main diagonal and ones everywhere else. Find the eigenvalues and eigenspaces of A and compute det(A).

Problem 17 Let G be the group of 2×2 matrices with determinant 1 over the four-element field \mathbf{F} . Let S be the set of lines through the origin in \mathbf{F}^2 . Show that G acts faithfully on S. (The action is faithful if the only element of G which fixes every element of S is the identity.)

Problem 18 Let G and H be finite groups of relatively prime orders. Show that the automorphism group $\operatorname{Aut}(G \times H)$ is isomorphic to the direct product of $\operatorname{Aut}(G)$ and $\operatorname{Aut}(H)$.