Preliminary Exam - Spring 1997

Problem 1 For which values of the exponents α , β does the following series converge?

$$\sum_{n=3}^{\infty} \frac{1}{n^{\alpha} (\log n)^{\beta}} \, \cdot \,$$

Problem 2 Let M be a metric space with metric d. Let C be a nonempty closed subset of M. Define $f: M \to \mathbb{R}$ by

$$f(x) = \inf\{d(x, y) \mid y \in C\}.$$

Show that f is continuous, and that f(x) = 0 if and only if $x \in C$.

Problem 3 Suppose that f(x) is continuous, nonnegative for $x \ge 0$, with $\int_0^\infty f(x)dx < \infty$. Prove that

$$\lim_{n \to \infty} \int_0^n \frac{xf(x)}{n} dx = 0$$

Problem 4 Let f and g be two entire functions such that, for all $z \in \mathbb{C}$, $\Re f(z) \leq k \Re g(z)$ for some real constant k (independent of z). Show that there are constants a, b such that

$$f(z) = ag(z) + b$$

Problem 5 Prove that

$$\int_{-\infty}^{\infty} \frac{e^{-(t-i\gamma)^2/2}}{\sqrt{2\pi}} dt$$

is independent of the real parameter γ .

Problem 6 Suppose that X is a topological space and V is a finite-dimensional subspace of the vector space of continuous real valued functions on X. Prove that there exist a basis $\{f_1, \ldots, f_n\}$ for V and points x_1, \ldots, x_n in X such that $f_i(x_j) = \delta_{ij}$.

Problem 7 Suppose that A and B are endomorphisms of a finite-dimensional vector space V over a field **K**. Prove or disprove the following statements:

- 1. Every eigenvector of AB is also an eigenvector of BA.
- 2. Every eigenvalue of AB is also an eigenvalue of BA.

Problem 8 Classify all abelian groups of order 80 up to isomorphism.

Problem 9 Let R be the ring of $n \times n$ matrices over a field. Suppose S is a ring and $h : R \to S$ is a homomorphism. Show that h is either injective or zero.

Problem 10 Let $f : \mathbb{R} \to \mathbb{R}$ be a bounded function (i.e., there is a constant M such that $|f(x)| \leq M$ for all $x \in \mathbb{R}$). Suppose the graph of f is a closed subset of \mathbb{R}^2 . Prove that f is continuous.

Problem 11 Suppose that $f''(x) = (x^2 - 1)f(x)$ for all $x \in \mathbb{R}$, and that f(0) = 1, f'(0) = 0. Show that $f(x) \to 0$ as $x \to \infty$.

Problem 12 Evaluate the integral

$$\int_{-\infty}^{\infty} \frac{\sin^2 x}{x^2} dx \, .$$

Problem 13 Suppose that $f : \mathbb{C} \to \mathbb{C}$ is injective and everywhere holomorphic. Prove that there exist $a, b \in \mathbb{C}$ with $a \neq 0$ such that f(z) = az + b for all $z \in \mathbb{C}$.

Problem 14 Show that

$$\det(\exp(M)) = e^{\operatorname{tr}(M)}$$

for any complex $n \times n$ matrix M, where $\exp(M)$ is defined as in Problem ??.

Problem 15 Suppose that P and Q are $n \times n$ matrices such that $P^2 = P$, $Q^2 = Q$, and 1 - (P + Q) is invertible. Show that P and Q have the same rank.

Problem 16 Suppose that A is a commutative algebra with identity over \mathbb{C} (i.e., A is a commutative ring containing \mathbb{C} as a subring with identity). Suppose further that $a^2 \neq 0$ for all nonzero elements $a \in A$. Show that if the dimension of A as a vector space over \mathbb{C} is finite and at least two, then the equations $a^2 = a$ is satisfied by at least three distinct elements $a \in A$.

Problem 17 Let $GL_2(\mathbb{Z}_m)$ denote the multiplicative group of invertible 2×2 matrices over the ring of integers modulo m. Find the order of $GL_2(\mathbb{Z}_{p^n})$ for each prime p and positive integer n.

Problem 18 Let H be the quotient of an abelian group G by a subgroup K. Prove or disprove each of the following statements:

- 1. If H is finite cyclic then G is isomorphic to the direct product of H and K.
- 2. If H is a direct product of infinite cyclic groups then G is isomorphic to the direct product of H and K.