Preliminary Exam - Spring 1998

Problem 1 Prove that the polynomial $z^4 + z^3 + 1$ has exactly one root in the quadrant $\{z = x + iy | x, y > 0\}.$

Problem 2 Let f be analytic in an open set containing the closed unit disc. Suppose that |f(z)| > m for |z| = 1 and |f(0)| < m. Prove that f(z) has at least one zero in the open unit disc |z| < 1.

Problem 3 Let M be a non-empty complete metric space. Let $T: M \to M$ such that $T \circ T = T^2$ is a strict contraction. Prove that T has a unique fixed point in M, i.e., there is a unique point x_0 with $T(x_0) = x_0$.

Problem 4 Using the properties of the Riemann integral, show that if f is a non-negative continuous function on [0, 1], and $\int_0^1 f(x)dx = 0$, then f(x) = 0 for all $x \in [0, 1]$.

Problem 5 Let A be the ring of real 2×2 matrices of the form $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$. What are the 2-sided ideals in A?

Problem 6 Let G be the group \mathbb{Q}/\mathbb{Z} . Show that for every positive integer t, G has a unique cyclic subgroup of order t.

Problem 7 Suppose that A and B are two commuting $n \times n$ complex matrices. Show that they have a common eigenvector.

Problem 8 Let $m \ge 0$ be an integer. Let a_1, a_2, \ldots, a_m be integers and let

$$f(x) = \sum_{i=1}^{m} \frac{a_i x^i}{i!}$$

Show that if $d \ge 0$ is an integer then $f(x)^d/d!$ can be expressed in the form

$$\sum_{i=0}^{md} \frac{b_i x^i}{i!} \cdot$$

where the b_i are integers.

Problem 9 Let $M_1 = \begin{pmatrix} 3 & 2 \\ 1 & 4 \end{pmatrix}$, $M_2 = \begin{pmatrix} 5 & 7 \\ -3 & -4 \end{pmatrix}$, $M_3 = \begin{pmatrix} 5 & 6.9 \\ -3 & -4 \end{pmatrix}$. For which (if any) $i, 1 \leq i \leq 3$, is the sequence (M_i^n) bounded away from ∞ ? For which i is the sequence bounded away from 0?

Problem 10 Let $P_i = (a \cos \theta_i, b \sin \theta_i)$, i = 1, 2, 3, be a triple of points on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. What is the maximal value of the area of the triangle $\Delta P_1 P_2 P_3$? Determine those triangles with maximal area.

Problem 11 Let A, B, \ldots, F be real coefficients. Show that the quadratic form

$$4x^2 + 2Bxy + Cy^2 + 2Dxz + 2Eyz + Fz^2$$

is positive definite if and only if

$$A > 0, \qquad \begin{vmatrix} A & B \\ B & C \end{vmatrix} > 0, \qquad \begin{vmatrix} A & B & D \\ B & C & E \\ D & E & F \end{vmatrix} > 0.$$

Problem 12 Given the fact that $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$, evaluate the integral

$$I = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2 + (y-x)^2 + y^2)} dx \, dy \, .$$

Problem 13 Let a be a complex number with |a| < 1. Evaluate the integral

$$\int_{|z|=1} \frac{|dz|}{|z-a|^2}$$

Problem 14 Let K be a real constant. Suppose that y(t) is a positive differentiable function satisfying $y'(t) \leq Ky(t)$ for $t \geq 0$. Prove that $y(t) \leq e^{Kt}y(0)$ for $t \geq 0$.

Problem 15 For continuous real valued functions f, g on the interval [-1, 1] define the inner product $\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx$. Find that polynomial of the form $p(x) = a + bx^2 - x^4$ which is orthogonal on [-1, 1] to all lower order polynomials.

Problem 16 Let a > 0. Show that the complex function

$$f(z) = \frac{1 + z + az^2}{1 - z + az^2}$$

satisfies |f(z)| < 1 for all z in the open left half-plane $\Re z < 0$.

Problem 17 Let A be an $n \times n$ complex matrix with tr A = 0. Show that A is similar to a matrix with all 0's along the main diagonal.

Problem 18 Let N be a nilpotent complex matrix. Let r be a positive integer. Show that there is a $n \times n$ complex matrix A with

$$A^r = I + N.$$