Preliminary Exam - Spring 1999

Problem 1 Let d(X, Y) the distance between X and Y as defined in Problem ??. Give a proof or counterexample for each of the following statements, for disjoint sets X and Y.

- 1. If X and Y are closed in M then d(X, Y) > 0.
- 2. If X and Y are compact then d(X, Y) > 0.
- 3. If X is closed and Y compact then d(X, Y) > 0.

Problem 2 Suppose that a sequence of functions $f_n : \mathbb{R} \to \mathbb{R}$ converges uniformly on \mathbb{R} to a function $f : \mathbb{R} \to \mathbb{R}$, and that $c_n = \lim_{x \to \infty} f_n(x)$ exists for each positive integer n. Prove that $\lim_{n \to \infty} c_n$ and $\lim_{x \to \infty} f(x)$ both exist and are equal.

Problem 3 Suppose that f is a twice differentiable real-valued function on \mathbb{R} such that f(0) = 0, f'(0) > 0, and $f''(x) \ge f(x)$ for all $x \ge 0$. Prove that f(x) > 0 for all x > 0.

Problem 4 Evaluate $\int_0^\infty \frac{dx}{x^c(x+1)}$ for each real number $c \in (0,1)$.

- **Problem 5** 1. Prove that if f is holomorphic on the unit disc \mathbb{D} and $f(z) \neq 0$ for all $z \in \mathbb{D}$, then there is a holomorphic function g on \mathbb{D} such that $f(z) = e^{g(z)}$ for all $z \in \mathbb{D}$.
 - 2. Does the conclusion of Part 1 remain true if \mathbb{D} is replaced by an arbitrary connected open set in \mathbb{C} ?

Problem 6 Let p, q, r and s be polynomials of degree at most 3. Which, if any, of the following two conditions is sufficient for the conclusion that the polynomials are linearly dependent?

- 1. At 1 each of the polynomials has the value 0.
- 2. At 0 each of the polynomials has the value 1.

Problem 7 Suppose that the minimal polynomial of a linear operator T on a seven-dimensional vector space is x^2 . What are the possible values of the dimension of the kernel of T?

Problem 8 Let M be a 3×3 matrix with entries in the polynomial ring $\mathbb{R}[t]$ such that $M^3 = \begin{pmatrix} t & 0 & 0 \\ 0 & t & 0 \\ 0 & 0 & t \end{pmatrix}$. Let N be the matrix with real entries obtained

by substituting t = 0 in M. Prove that N is similar to $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

Problem 9 Let G be a finite group, with identity e. Suppose that for every $a, b \in G$ distinct from e, there is an automorphism σ of G such that $\sigma(a) = b$. Prove that G is abelian.

Problem 10 Suppose that f is a twice differentiable real function such that f''(x) > 0 for all $x \in [a, b]$. Find all numbers $c \in [a, b]$ at which the area between the graph y = f(x), the tangent to the graph at (c, f(c)), and the lines x = a, x = b, attains its minimum value.

Problem 11 Prove that if n is a positive integer and α , ε are real numbers with $\varepsilon > 0$, then there is a real function f with derivatives of all orders such that

- 1. $|f^{(k)}(x)| \leq \varepsilon$ for $k = 0, 1, \dots, n-1$ and all $x \in \mathbb{R}$,
- 2. $f^{(k)}(0) = 0$ for k = 0, 1, ..., n 1,
- 3. $f^{(n)}(0) = \alpha$.

Problem 12 Suppose that f is holomorphic on some neighborhood of a in the complex plane. Prove that either f is constant on some neighborhood of a, or there exist an integer n > 0 and real numbers $\delta, \varepsilon > 0$ such that for each complex number b satisfying $0 < |b - f(a)| < \varepsilon$, the equation f(z) = b has exactly n roots in $\{z \in \mathbb{C} \mid |z - a| < \delta\}$.

Problem 13 Let b_1, b_2, \ldots be a sequence of real numbers such that $b_k \ge b_{k+1}$ for all k and $\lim_{k\to\infty} b_k = 0$. Prove that the power series $\sum_{k=1}^{\infty} b_k z^k$ converges for all complex numbers z such that $|z| \le 1$ and $z \ne 1$.

Problem 14 Let $A = (a_{ij})$ be a $n \times n$ complex matrix such that $a_{ij} \neq 0$ if i = j + 1 but $a_{ij} = 0$ if $i \ge j + 2$. Prove that A cannot have more than one Jordan block for any eigenvalue.

Problem 15 Let M be a square complex matrix, and let $S = \{XMX^{-1} | X \text{ is non-singular}\}$ be the set of all matrices similar to M. Show that M is a nonzero multiple of the identity matrix if and only if no matrix in S has a zero anywhere on its diagonal.

Problem 16 Let ||x|| denote the Euclidean norm of a vector x. Show that for any real $m \times n$ matrix M there is a unique non-negative scalar σ , and (possibly non-unique) unit vectors $u \in \mathbb{R}^n$ and $v \in \mathbb{R}^m$ such that

- 1. $||Mx|| \leq \sigma ||x||$ for all $x \in \mathbb{R}^n$,
- 2. $Mu = \sigma v$,
- 3. $M^T v = \sigma u$ (where M^T is the transpose of M).

Problem 17 Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of degree $n \ge 3$. Let L be the splitting field of f, and let $\alpha \in L$ be a zero of f. Given that $[L:\mathbb{Q}] = n!$, prove that $\mathbb{Q}(\alpha^4) = \mathbb{Q}(\alpha)$.

Problem 18 Let G be a finite simple group of order n. Determine the number of normal subgroups in the direct product $G \times G$.