Department of Mathematics, University of California, Berkeley

YOUR 1 OR 2 DIGIT EXAM NUMBER

GRADUATE PRELIMINARY EXAMINATION, Part A Spring Semester 2019

- 1. Please write your 1- or 2-digit exam number on this cover sheet and on **all** problem sheets (even problems that you do not wish to be graded).
- 2. Indicate below which six problems you wish to have graded. **Cross out** solutions you may have begun for the problems that you have not selected.
- 3. Extra sheets should be stapled to the appropriate problem at the upper right corner. Do not put work for problem p on either side of the page for problem q if $p \neq q$.
- 4. No notes, books, calculators or electronic devices may be used during the exam.

PROBLEM SELECTION

Part A: List the six problems you have chosen:

_ , _

_ , _

GRADE COMPUTATION (for use by grader—do not write below)

_ , _

1A	1B	Calculus
2A	2B	Real analysis
3A	3B	Real analysis
4A	4B	Complex analysis
5A	5B	Complex analysis
6A	6B	Linear algebra
7A	7B	Linear algebra
8A	8B	Abstract algebra
9A	9B	Abstract algebra
Part A Subtotal:	Part B Subtotal:	Grand Total:

Problem 1A.

Score:

Let y be a solution of y'''-y = 0 such that $y(t) \to 0$ as $t \to \infty$. Show that y(0)+y'(0)+y''(0) = 0.

Problem 2A.

Score:

Let $f : \mathbb{R} \to \mathbb{R}$ be bounded and continuously differentiable. Show that every solution y of y' = f(y) is monotone.

Problem 3A.

Score:

Let f be a twice continuously differentiable function on [0,1] such that f(0) = f(1) = 0. Prove that

$$\max_{x \in [0,1]} |f(x)| \le \frac{1}{8} \max_{x \in [0,1]} |f''(x)|,$$

and find an example where equality holds.

Problem 4A.

Evaluate

$$I = \int_{-\infty}^{\infty} \frac{x \sin x}{(1+x^2)^2} \, dx.$$

Solution:

Score:

Problem 5A.

Score:

Find the number of complex roots of $e^z = 3z^6$ with |z| < 1 that have positive imaginary part.

Problem 6A.

Score:

Let n be a positive integer and let a be a complex number. Prove that $a^n = 1$ if and only if there are invertible n by n complex matrices X, Y such that YX = aXY.

Problem 7A.

Score:

Let A be a complex $n \times n$ matrix satisfying $A^{37} = I$. Show that A is diagonalizable.

Problem 8A.

Score:

Show that $F: \mathbb{C}^3 \to \mathbb{C}^3$ defined by

F(u, v, w) = (-u - v - w, uv + uw + vw, -uvw)

is surjective but not injective.

Problem 9A.

Score:

Let S be a countable set of real numbers. Show that there are function $g_n : \mathbb{N} \to \mathbb{N}$ such that if $f : \mathbb{N} \to \mathbb{N}$ is a function from \mathbb{N} to \mathbb{N} with $f(n + 1) > g_n(f(n))$ for all n, then $A = \sum_{n=1}^{\infty} \frac{1}{f(n)}$ converges to a real that is not in the set S.

Department of Mathematics, University of California, Berkeley

YOUR 1 OR 2 DIGIT EXAM NUMBER

GRADUATE PRELIMINARY EXAMINATION, Part B Spring Semester 2019

- 1. Please write your 1- or 2-digit exam number on this cover sheet and on **all** problem sheets (even problems that you do not wish to be graded).
- 2. Indicate below which six problems you wish to have graded. **Cross out** solutions you may have begun for the problems that you have not selected.
- 3. Extra sheets should be stapled to the appropriate problem at the upper right corner. Do not put work for problem p on either side of the page for problem q if $p \neq q$.
- 4. No notes, books, calculators or electronic devices may be used during the exam.

PROBLEM SELECTION

Part B: List the six problems you have chosen:

Problem 1B.

Evaluate

$$I = \int_0^{\pi/2} \frac{\sin x \cos x}{\sin^4 x + \cos^4 x} dx$$

Solution:

Score:

Problem 2B.

Score:

For $t \ge 0$ let

$$F(t) = \int_0^t \exp(-x^2) dx$$

and

$$G(t) = \int_0^1 \frac{\exp(-t^2(1+x^2))}{1+x^2} dx.$$

Show that $F(t)^2 + G(t)$ is constant and deduce the value of $F(\infty)$.

Problem 3B.

Score:

Show that $x_{n+1} = (1 + x_n)^{-1}$ converges and find its limit for any $x_0 > 0$.

Problem 4B.

Score:

Let $c_0, c_1, \ldots, c_{n-1}$ be complex numbers. Prove that all the zeroes of the polynomial

$$z^n + c_{n-1}z^{n-1} + \dots + c_1z + c_0$$

lie in the open disc with center 0 and radius

$$1 + |c_{n-1}| + \dots + |c_1| + |c_0|$$
.

Problem 5B.

Score:

If f(z) is analytic in the open disc $\mathbb{D} = \{z : |z| < 1\}$, and if |f(z)| < 1/(1-|z|) for all $z \in \mathbb{D}$, show that

$$\left|\frac{f^{(n)}(0)}{n!}\right| \le (n+1)\left(1+\frac{1}{n}\right)^n < e(n+1) \ .$$

Problem 6B.

Let \mathbb{Z}_2 be the ring of integers mod 2. Prove the following identity in $\mathbb{Z}_2[x_1, \ldots, x_n]$:

$$\det \begin{bmatrix} x_1 & \dots & x_n \\ x_1^2 & \dots & x_n^2 \\ & \dots & \\ x_1^{2^{n-1}} & \dots & x_n^{2^{n-1}} \end{bmatrix} = \prod_{(a_1,\dots,a_n) \neq (0,\dots,0)} (a_1 x_1 + \dots + a_n x_n),$$

where $(a_1 \ldots a_n)$ run all non-zero values in \mathbb{Z}_2^n .

Problem 7B.

Score:

Is it true that elements of the group $GL_2^+(\mathbb{R})$ of real 2×2 -matrices with positive determinant are conjugate in $GL_2^+(\mathbb{R})$ if and only if the matrices are similar (conjugate in $GL_2(\mathbb{R})$)? Either prove this or give a counterexample.

Problem 8B.

Score:

Let R be a ring (possibly non-commutative, possibly without an identity 1) in which every element is idempotent (this means that for all $a \in R$, $a^2 = a$). Show that R has characteristic 2 (2a = 0 for all a) and is commutative.

Problem 9B.

Score:

Recall that S_6 and A_6 are the symmetric group and alternating group on 6 letters, respectively.

Prove or give a counterexample (with explanation): For every $\sigma \in A_6$ there is a $\tau \in S_6$ such that $\tau^2 = \sigma$.