Preliminary Exam - Summer 1978

Problem 1 For each of the following either give an example or else prove that no such example is possible.

- 1. A nonabelian group.
- 2. A finite abelian group that is not cyclic.
- 3. An infinite group with a subgroup of index 5.
- 4. Two finite groups that have the same order but are not isomorphic.
- 5. A group G with a subgroup H that is not normal.
- 6. A nonabelian group with no normal subgroups except the whole group and the unit element.
- 7. A group G with a normal subgroup H such that the factor group G/H is not isomorphic to any subgroup of G.
- 8. A group G with a subgroup H which has index 2 but is not normal.

Problem 2 Let R be the set of 2×2 matrices of the form

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

where a, b are elements of a given field \mathbf{F} . Show that with the usual matrix operations, R is a commutative ring with identity. For which of the following fields \mathbf{F} is R a field: $\mathbf{F} = \mathbb{Q}$, \mathbb{C} , \mathbb{Z}_5 , \mathbb{Z}_7 ?

Problem 3 Let A be a $n \times n$ real matrix.

- 1. If the sum of each column element of A is 1 prove that there is a nonzero column vector x such that Ax = x.
- 2. Suppose that n = 2 and all entries in A are positive. Prove there is a nonzero column vector y and a number $\lambda > 0$ such that $Ay = \lambda y$.

- **Problem 4** 1. Using only the axioms for a field \mathbf{F} , prove that a system of m homogeneous linear equations in n unknowns with m < n and coefficients in F has a nonzero solution.
 - 2. Use (1) to show that if V is a vector space over \mathbf{F} which is spanned by a finite number of elements, then every maximal linearly independent subset of V has the same number of elements.

Problem 5 Evaluate

$$\int_0^{2\pi} e^{(e^{i\theta} - i\theta)} \, d\theta$$

Problem 6 Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function and let a > 0 and b > 0 be constants.

- 1. If $|f(z)| \leq a\sqrt{|z|} + b$ for all z, prove that f is a constant.
- 2. What can one prove about f if

$$|f(z)| \leqslant a|z|^{5/2} + b$$

for all z?

- **Problem 7** 1. Solve the differential equation g' = 2g, g(0) = a where a is a real constant.
 - 2. Suppose $f : [0,1] \to \mathbb{R}$ is continuous with f(0) = 0, and for 0 < x < 1f is differentiable and $0 \leq f'(x) \leq 2f(x)$. Prove that f is identically 0.

Problem 8 Let $\{S_{\alpha}\}$ be a family of connected subsets of \mathbb{R}^2 all containing the origin. Prove that $\bigcup_{\alpha} S_{\alpha}$ is connected.

Problem 9 Let X and Y be nonempty subsets of a metric space M. Define

$$d(X,Y) = \inf\{d(x,y) \mid x \in X, y \in Y\}$$

1. Suppose X contains only one point x, and Y is closed. Prove

$$d(X,Y) = d(x,y)$$

for some $y \in Y$.

2. Suppose X is compact and Y is closed. Prove

$$d(X,Y) = d(x,y)$$

for some $x \in X, y \in Y$.

3. Show by example that the conclusion of Part 2 can be false if X and Y are closed but not compact.

Problem 10 Let $U \subset \mathbb{R}^n$ be a convex open set and $f : U \to \mathbb{R}^n$ a differentiable function whose partial derivatives are uniformly bounded but not necessarily continuous. Prove that f has a unique continuous extension to the closure of U.

Problem 11 Suppose the power series

$$\sum_{n=0}^{\infty} a_n z^n$$

converges for |z| < R where z and the a_n are complex numbers. If $b_n \in \mathbb{C}$ are such that $|b_n| < n^2 |a_n|$ for all n, prove that

$$\sum_{n=0}^{\infty} b_n z^n$$

converges for |z| < R.

- **Problem 12** 1. Suppose f is analytic on a connected open set $U \subset \mathbb{C}$ and f takes only real values. Prove that f is constant.
 - 2. Suppose $W \subset \mathbb{C}$ is open, g is analytic on W, and $g'(z) \neq 0$ for all $z \in W$. Show that

$$\{\Re g(z) + \Im g(z) \mid z \in W\} \subset \mathbb{R}$$

is an open subset of \mathbb{R} .

Problem 13 Let R denote the ring of polynomials over a field \mathbf{F} . Let p_1, \ldots, p_n be elements of R. Prove that the greatest common divisor of p_1, \ldots, p_n is 1 if and only if there is an $n \times n$ matrix over R of determinant 1 whose first row is (p_1, \ldots, p_n) .

Problem 14 Let G be a finite multiplicative group of 2×2 integer matrices.

- 1. Let $A \in G$. What can one prove about
 - (i) det A?
 - (ii) the (real or complex) eigenvalues of A?
 - (iii) the Jordan or Rational Canonical Form of A?
 - (iv) the order of A?
- 2. Find all such groups up to isomorphism.

Note: See also Problem ??.

Problem 15 Let V be a finite-dimensional vector space over an algebraically closed field. A linear operator $T: V \to V$ is called completely reducible if whenever a linear subspace $E \subset V$ is invariant under T, that is $T(E) \subset E$, there is a linear subspace $F \subset V$ which is invariant under T and such that $V = E \oplus F$. Prove that T is completely reducible if and only if V has a basis of eigenvectors.

- **Problem 16** 1. Prove that a linear operator $T : \mathbb{C}^n \to \mathbb{C}^n$ is diagonalizable if for all $\lambda \in \mathbb{C}$, $\ker(T - \lambda I)^n = \ker(T - \lambda I)$, where I is the $n \times n$ identity matrix.
 - 2. Show that T is diagonalizable if T commutes with its conjugate transpose T^* (i.e., $(T^*)_{ik} = \overline{T_{ki}}$).

Problem 17 Let *E* be the set of functions $f : \mathbb{R} \to \mathbb{R}$ which are solutions to the differential equation f''' + f'' - 2f = 0.

- 1. Prove that E is a vector space and find its dimension.
- 2. Let $E_0 \subset E$ be the subspace of solutions g such that $\lim_{t \to \infty} g(t) = 0$. Find $g \in E_0$ such that g(0) = 0 and g'(0) = 2.

Problem 18 Let N be a norm on the vector space \mathbb{R}^n ; that is, $N : \mathbb{R}^n \to \mathbb{R}$ satisfies

$$N(x) \ge 0 \text{ and } N(x) = 0 \text{ only if } x = 0,$$

$$N(x+y) \le N(x) + N(y),$$

$$N(\lambda x) = |\lambda| N(x)$$

for all $x, y \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$.

- 1. Prove that N is bounded on the unit sphere.
- 2. Prove that N is continuous.
- 3. Prove that there exist constants A > 0 and B > 0, such that for all $x \in \mathbb{R}^n, A \|x\| \leq N(x) \leq B \|x\|$.

Problem 19 Let $f : \mathbb{R} \to \mathbb{R}$ be continuous. Suppose that \mathbb{R} contains a countably infinite subset S such that

$$\int_{p}^{q} f(x) \, dx = 0$$

if p and q are not in S. Prove that f is identically 0.

Problem 20 Let $M_{n \times n}$ denote the vector space of real $n \times n$ matrices. Define a map $f: M_{n \times n} \to M_{n \times n}$ by $f(X) = X^2$. Find the derivative of f.