Topology Qualifying Exam Workshop May 2020 Worksheet 4A

Theme: Homology: Simplicial homology, singular homology, induced homomorphism, homotopy invariance; exact sequence, long exact homology sequence, Mayer-Vietoris Theorem. Applications.

Part 1 - 5-10 minutes

Warm-up:

- 1. Give a Δ -complex structure for a standard 2-simplex Δ and write down its chain complex. Explicitly describe the boundary homomorphisms.
- 2. Give a Δ -complex structure for S^1 , and use that to compute the homology groups for S^1 .
- 3. What is the difference between the reduced homology and (non-reduced) homology?
- 4. Let X be a topological space and $A, B \subset X$ open subspaces with $X = A \cup B$. What does the Mayer-Vietoris theorem say about the homology groups of X and its subspaces?

Part 2 - 1 hour and 40 minutes

Try these problems:

- 1. (May 2015) Compute the (reduced) singular homology groups of the space $X = S_1 \times (S_1 \vee S_1)$, which can be thought of as two copies of $S_1 \times S_1$ glued together along their copies of $S_1 \times \{x_0\}$. [You may use your knowledge of the homology groups of $T^2 = S_1 \times S_1$ in your calculations.]
- 2. (January 2017) If X is a Δ -complex with at most one k-simplex for each $0 \le k \le 5$, show that each of the homology groups $H_k(X)$ must be cyclic for $0 \le k \le 5$. Can all of these groups be non-trivial? Explain why or why not.
- 3. (May 2018) Let Δ_2 and Δ'_2 be distinct 2-simplices, and let X be the quotient space obtained by identifying the six vertices of $\Delta_2 \cup \Delta'_2$ to a single point. Identify a Δ -complex structure for X and compute the simplicial homology groups $H^{\Delta}_n(X)$ for all n.
- 4. (January 2019) Recalling that $S^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$, define the *equator* of S^2 to be $\{(x, y, z) \in S^2 : z = 0\}$, so that the equator is homeomorphic to S^1 . Let Z_1 and Z_2 be disjoint copies of the 2-sphere S^2 , let f be a homeomorphism from the equator of Z_1 to the equator of Z_2 , and let Z be the quotient space obtained from $Z_1 \cup Z_2$ by identifying the equator of Z_1 to the equator of Z_2 via f. Find a Δ -complex structure on the space Z, and compute the simplicial homology groups of Z.
- 5. (May 2019) For a topological space X, the cone on X, cX, is the quotient space of $X \times [0, 1]$ under the equivalence relation $(x, s) \sim (y, t)$ iff either (x, s) = (y, t) or s = t = 1. The suspension of X ΣX , is the union of two copies of cX along $X \times \{0\}$ realized as the quotient space of $X \times [0, 1]$ under the equivalence relation $(x, s) \sim (y, t)$ iff either (x, s) = (y, t) or s = t = 1 or s = t = 0.
 - (a) Show that the cone on X is contractible.
 - (b) Use a Mayer-Vietoris sequence to show that for every $n \ge 1$ we have that $\tilde{H}_n(\Sigma X) \cong \tilde{H}_{n-1}(X)$.

Part 3 - 5-10 minutes

Wrap-up discussion with everyone:

- 1. Which of these problems did you find easy? Hard?
- 2. Which topics in the theme do you need to review more?