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Week 2: Calculus II (Part 1)

Practice Problem Solutions

Problem 1. What is the length of the curve (x(t), y(t)) = (cos(t), sin(t)) for 0 ≤ t ≤ π?

Solution. The length is half the circumference of a unit circle to it is π. Alternatively,
using the arc length formula:

L =

∫ π

0

√
x′(t)2 + y′(t)2dt =

∫ π

0

√
sin2(t) + cos2(t)dt = π.

Problem 2. Compute

∫ e−2

e−3

dx

x log(x)
.

Solution. Using the substitution y = log(x) gives∫ e−2

e−3

dx

x log(x)
=

∫ −2
−3

dy

y
= log |−2| − log |−3| = log

(
2
3

)
.

Problem 3. For n ∈ N, evaluate

∫ ∞
0

xne−xdx.

Solution. Defining

In =

∫ ∞
0

xne−xdx,

we see I0 = 1 and for n ≥ 1,

In = [−xne−x]x→∞x=0 + n

∫ ∞
0

xn−1e−xdx = nIn−1.

Thus by induction, it is easily seen that In = n!. (One may recognize that In = Γ(n + 1)
where Γ is the Gamma Function)

Problem 4. Perform the integral

∫ x

−∞

dt

cosh(t)
. (Recall cosh(t) = et+e−t

2
)

Solution. We see∫ x

−∞

dt

cosh(t)
=

∫ x

−∞

2etdt

1 + e2t
= 2

∫ ex

0

ds

1 + s2
= 2 arctan(ex)

where we made the substitution s = et.
Note: this function (shifted by a constant) is called the Gudermannian function and

gives a connection between the ordinary trig. functions and hyperbolic trig. functions that
doesn’t invoke complex numbers.

https://en.wikipedia.org/wiki/Gamma_function
https://en.wikipedia.org/wiki/Gudermannian_function
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Problem 5. Compute

∫
x+ 2

x3 − x2 + 2x− 2
dx.

Solution. The denominator factors like x3 − x2 + 2x − 2 = (x − 1)(x2 + 2). Performing
partial fractions, we have

x+ 2

(x− 1)(x2 + 2)
=

A

x− 1
+
Bx+ C

x2 + 2
⇐⇒ x+ 2 = A(x2 + 2) + (Bx+ C)(x− 1).

Solving gives A = 1, B = −1, C = 0. Thus∫
x+ 2

x3 − x2 + 2x− 2
dx =

∫ (
1

x− 1
− x

x2 + 2

)
dx = log(x− 1)− 1

2
log(x2 + 2) + constant

Problem 6. Evaluate

∫ a

0

x2 + b2

x2 + a2
dx where a, b > 0 are constant.

Solution. Notice that∫ a

0

x2 + b2

x2 + a2
dx =

∫ a

0

(
1 +

b2 − a2

x2 + a2

)
dx = a+

(
b2 − a2

a

)
arctan

(x
a

)∣∣∣∣x=a
x=0

= a+
π

4

(
b2 − a2

a

)
.

Problem 7. What volume is created if the area between f(x) = x and g(x) = x2 for
x ∈ [0, 1] is revolved about the x-axis? What if the same area is revolved about the y-axis?

Solution. The area occurs on the on the interval [0, 1]. Thus the volume created when it is
revolved about the x-axis is

π

∫ 1

0

(x2 − x4)dx = π
(
1
3
− 1

5

)
= 2π

15

and the volume when it is revolved about the y-axis is

π

∫ 1

0

(y − y2)dy = π
(
1
2
− 1

3

)
= π

6
.

Problem 8. Compute

∫ π/2

0

dx

1 + tan(x)2020
.

Solution. Call the integral I. Making the substitution x = π/2− y, we see

I =

∫ π/2

0

dx

1 + tan(x)2020
=

∫ π/2

0

dy

1 + tan(π/2− y)2020
.

But cos(π/2− y) = sin(y) and sin(π/2− y) = cos(y) so

I =

∫ π/2

0

dy

1 + cot(y)2020
=

∫ π/2

0

tan(y)2020dy

1 + tan(y)2020
.
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Taking this representation of I and adding it to the original, we see

2I =

∫ π/2

0

(
1 + tan(x)2020

1 + tan(x)2020

)
dx =

π

2
=⇒ I =

π

4
.

Note that curiously enough, this manipulation did not depend on the number 2020 in
any way; that is, the integral

I(α) =

∫ π/2

0

dx

1 + tan(x)α

is identically equal to π/4 for α ≥ 0.

Problem 9. Compute

∫ ∞
0

log(t)

1 + t2
dt.

Solution. Using the substitution t 7→ 1/t for t ∈ (0, 1), we see∫ 1

0

log(t)

1 + t2
dt =

∫ 1

∞

log(1/t)

1 + 1
t2

(
− 1

t2

)
dt = −

∫ ∞
1

log(t)

1 + t2
dt.

Thus the integral is zero since the contributions from (0, 1) and (1,∞) cancel.

Problem 10. (Gabriel’s Horn) Let f(x) = 1/x, for x ∈ [1,∞). Find the volume and surface
area of the shape which results from rotating the graph of f about the x-axis.

Solution. The volume is given by

V = π

∫ ∞
1

dx

x2
= π

(
−1

x

)∣∣∣∣x→∞
x=1

= π.

The surface area formula gives

SA = 2π

∫ ∞
1

1

x

√
1 +

1

x2
dx ≥ 2π

∫ ∞
1

dx

x
= +∞

so this shape has finite volume but infinite surface area.

Problem 11. Evalutate lim
n→∞

(3n + 5n)1/n. More generally, if x1, . . . , xk > 0, evaluate the

limit lim
n→∞

(xn1 + . . .+ xnk)1/n.

Solution. We see
5 ≤ (3n + 5n)1/n ≤ (5n + 5n)1/n = 21/n5.

Taking the limit as n→∞, the squeeze theorem shows that

lim
n→∞

(3n + 5n)1/n = 5.
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More generally
lim
n→∞

(xn1 + . . .+ xnk)1/n = max{x1, . . . , xk}

using similar reasoning.

Problem 12. For what values of α, β ∈ R does the series

∞∑
n=2

1

nα log(n)β

converge/diverge?

Solution. If α > 1, then we can compare this series with
∑

1
nα

to see that it converges.
If α < 1, then we can find ε > 0 small enough that α+ ε < 1. Since any power of log(n)

is asymptotically smaller than any power of n, we see that nα log(n)β . nα+ε and so we can
compare this series to

∑
1

nα+ε
to see that it diverges.

If α = 1, we can use the integral test. Note that∫ ∞
2

dx

x log(x)β
=

∫ ∞
log(2)

dy

yβ

converges if and only if β > 1. Thus the series also converges if and only if β > 1.

Problem 13. Do the series
∞∑
n=2

1

log(n!)
and

∞∑
n=3

1

log(n)log(n)
converge or diverge?

Solution. Using log(n!) =
∑n

k=1 log(k) ≤ n log(n), we have

∞∑
n=2

1

log(n!)
≥

∞∑
n=2

1

n log(n)

and so this series diverges by comparison using the result of Problem 12.
The other series converges. Indeed, we see that

log(n)log(n) = elog(log(n)) log(n) =
(
elog(n)

)log(log(n))
= nlog(log(n)).

Now for n > ee
2
, we have log(log(n)) > 2, thus

∞∑
n=3

1

log(n)log(n)
≤ C +

∞∑
n=dee2e

1

n2
<∞.

Problem 14. Do the series
∞∑
n=1

n!

2n2 and
∞∑
n=1

n
√
n

2n
converge or diverge?
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Solution. For the first we use the ratio test. Since

lim
n→∞

(n+ 1)!

n!

2n
2

2n2+2n+1
= lim

n→∞

n+ 1

22n+1
= 0

the first series converges. For the second series, we use the root test. We have

lim
n→∞

(
n
√
n

2n

)1/n

=
1

2
lim
n→∞

n1/
√
n =:

1

2
L.

Notice that

logL = lim
n→∞

log(n)√
n

= 0 =⇒ L = 1

and thus the series converges since the root test results in a limit of 1/2.

Problem 15. Fix an integer m > 0. Evaluate the infinite sum

∞∑
n=1

m

n(n+m)
.

Solution. Using partial fractions gives

m

n(n+m)
=

(
1

n
− 1

n+m

)
.

Now when we sum, there will be telescoping so that all terms past 1
m

cancel, leaving behind

∞∑
n=1

m

n(n+m)
=

m∑
k=1

1

k
.

Problem 16. Decide whether the following series converge or diverge:

(a)
∞∑
n=1

[1− tanh(n)], (b)
∞∑
n=1

(π
2
− arctan(n)

)
.

Solution. We see

1− tanh(n) = 1− en − e−n

en + e−n
=

2e−n

en + e−n
≤ 2e−2n

and so the first series converges by comparison to the goemetric series
∑

(e−2)n.
For the second series, consider

lim
n→∞

π/2− arctan(n)

1/n
= lim

n→∞

− 1
1+n2

−1/n2
= 1
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and so (π/2− arctan(n)) ∼ 1
n

which shows that the second series diverges.

Problem 17. Find a sequence (an) such that an > 0 for all n ∈ N and an → 0 but

∞∑
n=1

(−1)nan diverges.

[Note: this shows that the assumption that an is decreasing is necessary in the Alternating
Series Test.] Find a sequence (bn) such that

∞∑
n=1

bn converges while
∞∑
n=1

b2n diverges.

Is it possible to choose (bn) so that
∑∞

n=1 bn converges absolutely while
∑∞

n=1 b
2
n diverges?

Solution. For the first part, take a2m−1 = 1
2m

and a2m = 1
m

. Then clearly an > 0 and
an → 0 but the even partial sums are given by

2N∑
n=1

(−1)nan =
N∑
n=1

1

n
−

N∑
n=1

1

2n
≥ −1 +

1

2

N∑
n=1

1

n
→∞ as N →∞

[where we’ve used
∑∞

n=1 2−n = 1]. Thus the infinite sum does not converge.
For the second part, let bn = (−1)n/

√
n. Then

∑
bn converges by the alternating series

test but
∑
b2n is the harmonic series which diverges.

To answer the last question: no, this is impossible. If bn converges, then bn → 0 and so
for sufficiently large n, we have b2n ≤ |bn| and so

∑
b2n converges by comparison to

∑
|bn|

which is assumed to converge. (This proves that `1(N) ⊆ `2(N) which is a specific case of
the more general fact that Lp(X,µ) ⊆ Lq(X,µ) whenever 1 ≤ p ≤ q and (X,µ) is a measure
space with no sets of arbitrarily small positive measure.)

Problem 18. Let (an) be a sequence of positive numbers. The infinite product

∞∏
n=1

an = a1 · a2 · a3 · · ·

is said to converge if there is L ∈ (0,∞) such that limN→∞
∏N

n=1 an = L. Otherwise the
product is said to diverge to zero or diverge to +∞ if the limit is zero or +∞ respectively.
Consider the infinite products

(a)
∞∏
n=1

(
1 +

1

n2

)
, (b)

∞∏
n=1

(
1 +

1

n

)
, (c)

∞∏
n=1

(
1− 1

log(n)

)
.

Show that (a) converges, (b) diverges to +∞ and (c) diverges to 0.
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Solution. Let P =
∏∞

n=1 an. Since log is continuous, we can pass it through limits so we
see

log(P ) = log

(
lim
N→∞

N∏
n=1

an

)
= lim

N→∞
log

(
N∏
n=1

an

)
= lim

N→∞

N∑
n=1

log(an) =
∞∑
n=1

log(an).

Thus we need only check the sums

(a)
∞∑
n=1

log

(
1 +

1

n2

)
, (b)

∞∑
n=1

log

(
1 +

1

n

)
, (c)

∞∑
n=1

log

(
1− 1

log(n)

)
.

Note that as x → 0, we have log(1 + x) ∼ x. Thus by the limit comparison test, the first
some converges while the second divergest to +∞ and the third diverges to −∞. Undoing
the logarithm, this shows that the first product converges, the second diverges to +∞ and
the third diverges to 0. [Of course, this is a bit formal; special considerations should be
taken if P =∞ or P = 0 since log(P ) is not defined in those cases, but it’s the same general
idea.]

Problem 19. Suppose that (x(t), y(t)) for t ∈ [a, b] is the parameterization a curve and

that x′(t) 6= 0 for all t ∈ [a, b]. Find dy
dx

and d2y
dx2

as functions of t.

Solution. From the chain rule, we have dy
dt

= dy
dx

dx
dt

. Since x′(t) 6= 0, this shows that

dy

dx
=
y′(t)

x′(t)
.

Now
d2y

dx2
=

d

dx

(
dy

dx

)
=

1

x′(t)

d

dt

(
y′(t)

x′(t)

)
=
y′′(t)x′(t)− y′(t)x′′(t)

x′(t)3
.

Problem 20. Does the series

1

3
+

1

3
√

3
+

1

3
√

3 3
√

3
+ · · ·+ 1

3
√

3 3
√

3 + · · ·+ n
√

3
+ · · ·

converge or diverge?

Solution. Put Hn =
∑n

k=1
1
k
. Then the series can be written

∞∑
n=1

1

3Hn
.

Now

Hn =
n∑
k=1

1

k
=

n∑
k=1

∫ k+1

k

1

k
dx =

n∑
k=1

∫ k+1

k

1

bxc
dx =

∫ n+1

1

dx

bxc
≥
∫ n+1

1

dx

x
= log(n+ 1).
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Thus
∞∑
n=1

1

3Hn
≤

∞∑
n=1

1

3log(n+1)
=
∞∑
n=1

1

elog(3) log(n+1)
=
∞∑
n=1

1

(n+ 1)log(3)
<∞

since log(3) > 1.

Problem 21. Evaluate the following limits or prove that they diverge:

lim
n→∞

(
1√

n2 + 12
+

1√
n2 + 22

+ · · ·+ 1√
n2 + n2

)
; (1)

lim
n→∞

(
1√

n2 + 1
+

1√
n2 + 2

+ · · ·+ 1√
n2 + n

)
; (2)

lim
n→∞

(
1√

n2 + 1
+

1√
n2 + 2

+ · · ·+ 1√
n2 + n2

)
. (3)

Solution. For (1), we see

lim
n→∞

n∑
k=1

1√
n2 + k2

= lim
n→∞

n∑
k=1

1

n

1√
1 +

(
k
n

)2 =

∫ 1

0

dx√
1 + x2

= sinh−1(1).

[You can evaluate the integral using the substitution x = sinh(t) and the identity cosh2(t)−
sinh2(t) = 1.]

For (2), call the limit L2. We have

L2 = lim
n→∞

n∑
k=1

1√
n2 + k

≤ lim
n→∞

n∑
k=1

1

n
= 1.

Also

L2 = lim
n→∞

n∑
k=1

1√
n2 + k

≥ lim
n→∞

n∑
k=1

1√
n2 + n

= lim
n→∞

n√
n2 + n

= 1.

Thus L2 = 1.
Limit (3) diverges. To prove this, we use the same lower bound as in (2), but there are

more terms:
n2∑
k=1

1√
n2 + k

≥
n2∑
k=1

1√
2n2

=
n√
2
→∞.

Problem 22. Compute the integral

∫ 1

0

log(1 + t)

1 + t2
dt.

Solution. Call the integral I. Using the substitution t = tan(θ), we have

I =

∫ π/4

0

log(1 + tan(θ))dθ

=

∫ π/4

log(sec(θ)(cos(θ) + sin(θ)) dθ

=

∫ π/4

0

log(cos(θ) + sin(θ)) dθ −
∫ π/4

0

log(cos(θ)) dθ.
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But cos(θ) + sin(θ) =
√

2 cos(π/4− θ). Thus

I =

∫ π/4

0

log(
√

2 cos(π/4− θ)) dθ −
∫ π/4

0

log(cos(θ)) dθ

=

∫ π/4

0

log 2

2
+

∫ π/4

0

log(cos(π/4− θ)) dθ −
∫ π/4

0

log(cos(θ)) dθ

=
π log 2

8
+

∫ π/4

0

log(cos(θ)) dθ −
∫ π/4

0

log(cos(θ)) dθ =
π log 2

8
,

using the substitution φ = π/4− θ.

Problem 23. Decide whether the following integral converges:

∫ ∞
0

dx

1 + x4 sin2(x)

Solution. The integral converges. Call the integral I and break it up into intervals of length
π (since sin2(x) is π-periodic):

I =
∞∑
n=0

∫ (n+1)π

nπ

dx

1 + x4 sin2(x)
=
∞∑
n=0

∫ π

0

dy

1 + (y + nπ)4 sin2(y)
≤

∞∑
n=0

∫ π

0

dy

1 + (nπ)4 sin2(y)
.

But since sin2(y) is symmetric about π/2, we have

I ≤ 2
∞∑
n=0

∫ π/2

0

dy

1 + (nπ)4 sin2(y)
.

And finally, using sin(y) ≥ y/2 for y ∈ [0, π/2], we see

I ≤
∞∑
n=0

∫ π/2

0

dy

1 + 1
4
(nπ)4y2

=
π

2
+
∞∑
n=1

2

(nπ)2

∫ n2π3/4

0

dt

1 + t2
≤ π

2
+ C

∞∑
n=1

1

n2

where C = 2
π2

∫∞
0

dt
1+t2

= 1
π
. Thus the integral converges since

∑∞
n=1

1
n2 converges.


