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Week 4: Differential Equations & Linear Algebra
Practice Problem Solutions

Problem 1. Which of the following most closely represents the graph of the solution to y′ = 1 + y4?

Solution. The answer is (A). There are a number of ways one caould arrive at this answer, but perhaps
most obviously, the equation gives y′ ≥ 1 and thus the slope of the graph is always bigger than 1, whereas
there are portions of graphs (B), (C), (D), (E) where there slope is very near zero. Another good heuris-
tic, is that if we change y4 to y2, the dynamics shouldn’t change much qualitatively, and the equation
y′ = 1 + y2 has solution y = tan(x), so the solution to y′ = 1 + y4 should look somewhat similar, which
the graph of (A) does.

Problem 2. Solve the initial value problem y′ + xy = x, y(0) = −1.

Solution. The integrating factor here is µ(x) = e
∫
x dx = ex

2/2. We see

ex
2/2y′ + xex

2/2y = xex
2/2 =⇒ d

dx

[
ex

2/2y(x)
]

= xex
2/2 =⇒ ex

2/2y(x)− y(0) = ex
2/2 − 1.

Thus

y(x) = 1− 2e−x
2/2.

Problem 3. A tank initially contains a salt solution of 3 grams of salt dissolved in 100 liters of water. A
salt solution containing 0.02 grams of salt per liter is pumped into the tank at 4 liters per minute. The
tank is also draining at 4 liters per minute. Assuming the mixing is instantaneous, how many grams of
salt are in the tank after 100 minutes?

Solution. Let S denote the amount of salt in the tank in grams. Then S(0) = 3, and the change in S
is given by

dS

dt
= “salt in”− “salt out” =

(
0.02

grams

liters

)(
4

liters

sec

)
−
(
S

100

grams

liters

)(
4

liters

sec

)
=

2

25
− S

25
.

The particular solution is Sp(t) = 2 and the homogeneous solution is Sh(t) = e−t/25. Thus the solution is

S(t) = 2− Ce−t/25.

and S(0) = 3 gives C = −1 so

S(t) = 2 + e−t/25 =⇒ S(100) = 2 + e−4.

Problem 4. Find the solution of x dy + (y − xex)dx = 0 which passes through the point (1, 0).
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Solution. This problem can be re-phrased

x
dy

dx
+ y = xex.

The left-hand side is already a perfect derivative:

d

dx

[
xy(x)

]
= xex =⇒ xy(x) = xex − ex + C =⇒ y(x) = ex − ex

x
+
C

x
.

Now y(1) = 0 gives C = 0 and so y(x) = ex − ex/x.

Problem 5. Which of the following indicates the graphs of two functions satisfying(
dy
dx

)2
+ 2y dydx + y2 = 0?

Solution. The equation can be factored into (y′(x) + y(x))2 = 0 so y′(x) = −y(x) and we find
y(x) = Ce−x. Thus the graphs should decay to zero as x→∞ so (A) is the correct answer.

Problem 6. Find the general solution of y′′′ − 3y′′ + 3y′ − y = 0.

Solution. Guessing y(x) = erx, we have r3− 3r2 + 3r− 1 = 0 which implies (r− 1)3 = 0. This equation
has a triple root at r = 1, so the general solution is

y(x) = C0e
2 + C1xe

x + C2x
2ex.

Problem 7. Find all the solutions of the equation yy′′ − 2(y′)2 = 0 which pass through x = 1, y = 1.

Solution. Divide the equation by yy′ to arrive at

y′′

y′
− 2

y′

y
= 0 =⇒ log(y′)− 2 log(y) = C =⇒ y′

y2
= C

where now C > 0. Integrating again gives

−1

y
= Cx+D =⇒ y(x) =

1

D − Cx

where again C > 0. Plugging in y(1) = 1 shows that D − C = 1 so D = 1 + C. So the set of all such
solutions is

y(x) =
1

1 + C(1− x)
, for C > 0.

Problem 8. (Cauchy-Euler Equations) Consider the equation 2x2y′′ + 3xy′ − 15y = 0 for x > 0. Find
the general solution by either (1) making the substitution x = et or (2) searching for a solution of the
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form y(x) = xλ. If you try the latter, you will arrive at a quadratic polynomial for λ which has two roots.
If the equation were changed so that the polynomial has only one root, you would only find one solution.
How could you adjust to find another linearly independent solution?

Solution. We’ll do the problem both ways. First, guessing y(x) = xλ, we find that

2λ(λ− 1)xλ + 3λxλ − 15xλ = 0.

Since this must hold for all x, we need 2λ2 +λ− 15 = 0 so (2λ− 5)(λ+ 3) = 0. Thus the general solution
is given by

y(x) = C1x
5/2 + C2x

−3 .

Now we do this using the substitution x = et. Indeed, define Y (t) = y(et). We will find a differential
equation for Y (t). We see

Y ′(t) = ety′(et),

Y ′′(t) = e2ty′′(et) + ety′(et).

Thus
2Y ′′(t) + Y ′(t) = 2(et)2y(et) + 3ety′(et) = 15y(et) = 15Y (t).

Now we can solve for Y (t) by guessing Y (t) = ert and we’ll find r2 + r − 15 = 0 so r = 5/2,−3 just as λ
did above. Thus

Y (t) = C1e
5
2 t + C2e

−3t =⇒ y(x) = Y (log(x)) = C1x
5/2 + C2x

−3.

This latter method was a bit more complicated, but it helps answer the last question: what if we had a
repeated root for λ? In this case, we would transform the equation and find that the differential equation
for Y (t) has a characteristic polynomial (r − r1)2 = 0 and the solution would be

Y (t) = C1e
r1t + C2te

r1t =⇒ y(x) = Y (log(x)) = C1x
r1 + C2x

r1 log(x).

Problem 9. (Bernoulli Equations) Find the general solution of the differential equation y′ + 4
xy = x3y2

by making the substitution u = 1/y. Can you generalize this substitution so that it would work if y2 on
the right hand side was replaced by yα for any α 6= 0, 1?

Solution. We find a differential equation that u = 1/y satisfies. Indeed,

u′ = − 1

y2
y′ = − 1

y2

(
−4

x
y + x3y2

)
=

4

xy
− x3 =

4

x
u− x3.

This equation is now linear in u. We use an integrating factor:

u′ − 4

x
u = −x3 =⇒ 1

x4
u′ − 4

x5
u = −1

x
=⇒ d

dx

[
1

x4
u

]
= −1

x
.

Integrating gives the general solution

1

x4
u(x) = C − log(x) =⇒ u(x) = Cx4 − x4 log(x).

Thus inverting gives

y(x) =
1

u(x)
=

1

Cx4 − x4 log(x)
.
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To answer the last question, consider the equation

y′ + p(x)y = q(x)yα.

We want to make the substitution u = yβ and solve for β to linearize the equation. Indeed, this will give

u′ = βyβ−1y′ = βyβ−1
(
− p(x)y + q(x)yα

)
= −βp(x)yβ + βq(x)yα+β−1 = −βp(x)u+ βq(x)yα+β−1.

To eliminate the power of y, we choose β = 1− α. Thus u = y1−α satisfies the linear equation

u′ + (1− α)p(x)u = (1− α)q(x).

Problem 10. Which of the following are linear subspaces of the continuous functions from R to R?
I. {f : f is twice differentiable and f ′′(x)− 2f ′(x) + 3f(x) = 0 for all x}

II. {g : g is twice differentiable and g′′(x) = 3g′(x) for all x}
III. {h : h is twice differentiable and h′′(x) = h(x) + 1 for all x}

Solution. The answer is that I. and II. are subspaces but III. is not. The problem with III. is that the
set is not closed under addition or scaling. Indeed, it h1, h2 satisfy the equation, then

(h1 + h2)
′′ = (h1 + h2) + 2

which is a different equation, so h1 + h2 does not lie in the solution set.

Problem 11. If V,W are 2-dimensional subspaces of R4, what are the possible dimensions of V ∩W?
What if V,W are 4-dimensional subspaces of R7?

Solution. Suppose that V,W are subspaces of Rn. We have V ∩W ⊆ V,W so the dimension of the
intersection can no higher than that of V or W . But we also have the dimension formula

dim (V ∩W ) = dim (V ) + dim (W )− dim (span (V ∪W ))

and span (V ∪W ) ⊂ Rn. Thus

dim (V ∩W ) ≥ dim (V ) + dim (W )− n.

Applying both these results, we see in the first case

0 ≤ dim (V ∩W ) ≤ 2

and in the latter case
1 ≤ dim (V ∩W ) ≤ 4.

It’s easy to achieve any value in between the bounds just using the coordinate vectors. For example, in
the first case,

� if V = span (e1, e2) and W = span (e3, e4), then dim (V ∩W ) = 0,

� if V = span (e1, e2) and W = span (e1, e4), then dim (V ∩W ) = 1,

� if V = span (e1, e2) and W = span (e1, e2), then dim (V ∩W ) = 2.
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Problem 12. Suppose that V is the vector space of real 2× 3 matrices. If T is a linear transformation
from V onto R4, what is the dimension of the null space of T?

Solution. T is mapping a 6-dimensional vector space onto a 4-dimensional vector space. By the Rank-
Nullity theorem, we have

dim (R(T )) + dim (N(T )) = 6

and since T is onto, we have dim (R(T )) = dim
(
R4
)

= 4 so dim (N(T )) = 2.

Problem 13. Let A be a 2× 2 real matrix. Which of the following are necessarily true: (a) All entries
of A2 are non-negative, (b) the determinant of A2 is non-negative, (c) if A has two distinct eigenvalues
then A2 has two distinct eigenvalues.

Solution. It is not necessarily the case that all entries of A2 are positive. Indeed,

A =

(
1 −1
0 1

)
=⇒ A2 =

(
1 −2
0 1

)
which has a negative entry. Thus (a) is not necessarily true. For (c), notice that

A =

(
−1 0
0 1

)
has distinct eigenvalues by A2 = I does not. Thus (c) is not necessarily true. Property (b) is necessarily
true since the determinant is multiplicative:

det(A2) = det(A)2 ≥ 0.

Problem 14. Find the eigenvalues and eigenvectors of M =
(

0 1 1
1 0 1
1 1 0

)
.

Solution. We see

det(M − λI) =

∣∣∣∣∣∣
−λ 1 1
1 −λ 1
1 1 −λ

∣∣∣∣∣∣ = −λ(λ2 − 1)− (−λ− 1) + (1 + λ)

where we used co-factor expansion across the top row. We can factor (1 + λ) from all terms:

det(M − λI) = (1 + λ)(−λ(λ− 1) + 2) = −(1 + λ)2(λ− 2).

Thus the eigenvalues are λ1 = 2 with multiplicity 1 and λ2 = −1 with multiplicity 2. We look for an
eigenvector v1 = (x, y, z)t corresponding to λ1 = 2. We see (M − 2I)v1 = 0 implies

−2x+ y + z = 0

x− 2y + z = 0

x+ y − 2z = 0.

Adding 3x to the first equation, 3y to the second and 3z to the third shows that x = y = z thus an
eigenvector corresponding to λ1 = 2 is a scalar multiple of v1 = (1, 1, 1)t.

Eigenvectors v = (x, y, z) corresponding to λ2 = −1 satisfy x+ y + z = 0. All such vectors are linear
combinations of v2 = (1, 0,−1)t and v3 = (1,−1, 0)t.
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Problem 15. Suppose that f : R2 → R is linear. If f(1, 1) = 1 and f(−1, 0) = 2, what is f(3, 5)?

Solution. By linearity f(3, 5) = f(5 · (1, 1) + 2 · (−1, 0)) = 5f(1, 1) + 2f(−1, 0) = 9.

Problem 16. Find the rank of the n × n matrix with entries which simply count up from 1 to n2 in

increasing order. For example, if n = 3, we are considering the matrix
(

1 2 3
4 5 6
7 8 9

)
.

Solution. Call the matrix A. Then the i, j entry of A is given by Ai,j = (i− 1)n+ j for i, j = 1, . . . , n.
Now fixing i > 2, we have

Ai,j = (i− 1)n+ j

= (i− 1)n+ ((i− 1)− (i− 2))j

= (i− 1)(n+ j)− (i− 2)j

= (i− 1)A2,j − (i− 2)A1,j , for all j = 1, . . . , n.

This shows that any row Ai for i > 2 can be written as a linear combination of the first two rows. The
first two rows are linearly independent, so the matrix has rank 2 regardless of n. [Note: to see that the
first two rows are linearly independent, you can consider the principle 2× 2 submatrix:

(
1 2

n+1 n+2

)
. This

matrix has determinant −n and is this invertible.]

Problem 17. What is the dimension of the space of all polynomials p of degree at most 3 such that
p(−1) = p(0) = p(1) = 0?

Solution. As a general rule, each point you restrict will take away one degree of freedom. Since
order 3 polynomials have 4 degrees of freedom, the dimension of the set of polynomials p satisfying
p(−1) = p(0) = p(1) = 0 is 1. More explicitly, any polynomial satistying the equations has the form

p(x) = αx(x− 1)(x+ 1), α ∈ R.

Problem 18. If A,B are subspaces of V , which of the following are necessarily subspaces of V ?
(a) A+B = {x+ y : x ∈ A, y ∈ B}, (b) A ∪B, (c) A ∩B, (d) Ac = {x ∈ V : x 6∈ A}.

Solution. (a) and (c) are necessarily subspaces. To see that (d) doesn’t define a subspace, note that the
zero vector is in A which means it is not in Ac. To see that (b) does not necessarily define a subspace,
consider A = span (e1) and B = span (e2). Then A ∪ B is the coordinate axes. Both

(
1
0

)
and

(
0
1

)
are in

A ∪B but the sum
(
1
1

)
is not.

Problem 19. Find the matrix for the transformation of the xy-plane which reflects each vector through
the x-axis and doubles its length.

Solution. To reflect a vector through the x-axis, you need to flip the sign of the y component and to
double its length you need to multiply it by 2. The matrix that accomplishes these is

(
2 0
0 −2

)
.

Problem 20. Assume that V is a finite dimensional vector space and T : V → V is a linear transforma-
tion such that T 2 = T . Show that each v ∈ V can be uniquely written as v = v1 + v2 where T (v1) = v1
and T (v2) = 0.

Solution. Since T 2 = T , T fixes members of it’s image: T (T (v)) = T (v) =⇒ T (T (v) − v) = 0. This
shows that for any v ∈ V , T (v)− v ∈ N(T ). Thus for any v ∈ V , put v1 = T (v) and v2 = v−T (v). Then
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v = v1 + v2, where T (v1) = v1 and T (v2) = 0. Further, it v = u1 + u2 is another such representation,
then applying T shows that

T (v1)︸ ︷︷ ︸
=v1

+T (v2)︸ ︷︷ ︸
=0

= T (u1)︸ ︷︷ ︸
=u1

+T (u2)︸ ︷︷ ︸
=0

=⇒ v1 = u1,

whence v1 + v2 = u1 + u2 =⇒ v2 = u2. Thus the representation is unique. [Note: a linear operator T
satisfying T 2 = T is called a projection operator.]

Problem 21. Suppose that A has distinct eigenvalues λ1, . . . , λk with corresponding eigenvectors
v1, . . . vk. Show that {v1 . . . , vk} is a linearly independent set.

Solution. We use induction on k. If k = 1, the claim is trivial since {v1} is always a linearly independent
set when v1 6= 0. Suppose that any set of k eigenvectors corresponding to distinct eigenvalues is linearly
independent and suppose that {v1, . . . , vk, vk+1} is a set of k + 1 eigenvectors corresponding to distinct
eigenvalues λ1, . . . , λk, λk+1. Let α1, . . . , αk, αk+1 ∈ C be such that

α1v1 + · · ·+ αkvk + αk+1vk+1 = 0.

Apply the operator A− λk+1I to this equation and use that (A− λk+1I)vk+1 = 0 and (A− λk+1I)v` =
λ`v` − λk+1v` = (λ` − λk+1)v` for ` = 1, . . . , k. Then we see

α1(λ1 − λk+1)v1 + · · ·+ αk(λk − λk+1)vk = 0.

However, these vectors are linearly independent by our inductive hypothesis. Thus

α1(λ1 − λk+1) = · · · = αk(λk − λk+1) = 0.

Since the eigenvalues are assumed to be distinct, we can divide by λ` − λk+1 to see that α` = 0 for
all ` = 1, . . . , k. But then we have αk+1vk+1 = 0 which gives αk+1 = 0 as well, and we conclude that
{v1, . . . , vk, vk+1} is a linearly independent set.

Problem 22. Suppose that matrices A,B ∈ Rn×n satisfy AB −BA = A. Show that A is not invertible.
If instead we assume A 6= B, A3 = B3 and A2B = B2A, show that A2 +B2 is not invertible.

Solution. For the first part, if A was invertible, we would have

(AB −BA)A−1 = AA−1 =⇒ ABA−1 = B + I.

This would mean that B and B+I are similar which is impossible since the tr(B+I) = n+tr(B) whereas
similarity has to preserve the trace.
For the second part, notice that

(A2 +B2)A = A3 +B2A = B3 +A2B = (B2 +A2)B = (A2 +B2)B.

If A2 +B2 was invertible, then we would have A = B, but we’ve assumed that A 6= B, and thus A2 +B2

must not be invertible.

Problem 23. Show that there is no A ∈ R2×2 satisfying

A100 =

(
−1 0
0 −α

)
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when α > 1. If α = 1, find A ∈ R2×2 satisfying the equation.

Solution. Suppose that λ is an eigenvalue of A with eigenvector v. Then we see

Av = λv =⇒ A2v = λAv = λ2v =⇒ A3v = λ2Av = λ3v =⇒ Akv = λkv, for all k ∈ N.

In particular the eigenvalues of A100 are −1 and −α and so λ100 < 0 meaning that λ has non-zero
imaginary part. But since A has real entries (and this a real characteristic polynomial), the complex
eigenvalues of A come in conjugate pairs. Hence the eigenvalues of A are λ and λ. But then |λ| =

∣∣λ∣∣
makes it impossible that

∣∣λ100∣∣ = 1 while
∣∣∣λ100∣∣∣ = α > 1 (or vice versa).

If α = 1 so that A100 =
(−1 0

0 −1
)
. We can accomplish this with a rotation matrix. Indeed, let

Aθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

Then

AθAϕ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)
=

(
cos(θ) cos(ϕ)− sin(θ) sin(ϕ) −(cos(θ) sin(ϕ) + cos(ϕ) sin(θ))
cos(ϕ) sin(θ) + cos(θ) sin(ϕ) cos(θ) cos(ϕ)− sin(θ) sin(ϕ)

)
.

And now remembering that cos(a + b) = cos(a) cos(b) − sin(a) sin(b) and sin(a + b) = cos(a) sin(b) +
cos(b) sin(a), we have

AθAϕ =

(
cos(θ + ϕ) − sin(θ + ϕ)
sin(θ + ϕ) cos(θ + ϕ)

)
= Aθ+ϕ.

Now put θ = π/100. Then

A100
θ = A100θ = Aπ =

(
−1 0

0 −1

)
.

Problem 24. Show that there are no polynomials a, b, c, d : R→ R such that

1 + xy + x2y2 = a(x)b(y) + c(x)d(y)

for all x, y ∈ R.

Solution. First, suppose that α, β, γ are such that

α · (1) + β · (x2 + x+ 1) + γ · (x2 − x+ 1) = 0.

Then
α+ β + γ = 0, β − γ = 0, and β + γ = 0.

Adding the second and third equation gives β = 0. But then the second equation gives γ = 0 and then
the first gives α = 0. This shows that {1, x2 + x + 1, x2 − x + 1} are linearly independent in the vector
space of real polynomials.

Now supposing such polynomials a, b, c, d exist, we can plug in y = 0, 1,−1 and let b(0) = b0, b(1) =
b1, b(−1) = b2 (and similarly for d) to see that

1 = b0a(x) + d0c(x),

x2 + x+ 1 = b1a(x) + d1c(x),

x2 − x+ 1 = b2a(x) + d2c(x).
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This is impossible because two vectors a(x) and c(x) cannot span a 3-dimensional space.

Problem 25. Consider an n × n matrix in which each entry is either zero or one. If the matrix is
invertible, what is the maximum amount of ones in the matrix?

Solution. The maximum amount of ones in the matrix is n2 − n + 1. Indeed, we can think of starting
with a matrix full of ones and removing entries and replacing them with zero. If we have removed less
than n− 1 entries, then two columns have remained untouched, meaning there are still two columns full
of ones and the matrix is singular since its columns are linearly dependent. Thus there can be a most
n2 − n+ 1 ones.

Now we exhibit a matrix that actually has this number of ones. Define A ∈ Rn×n by

A =



1 1 1 1 · · · 1
0 1 1 1 · · · 1
1 0 1 1 · · · 1
...

. . .
. . .

...

1
. . .

. . .
...

1 1 · · · 1 0 1


.

That is, A is full of ones except the first subdiagonal is zero. Then A has n2 − n + 1 ones and A is
invertible. Indeed, if

Ax = 0

then

x1 + x2 + · · ·+ xn−1 + xn = 0,

x2 + · · ·+ xn−1 + xn = 0,

x1 + · · ·+ xn−1 + xn = 0,

...

x1 + x2 + · · · + xn = 0.

Subtracting the second equation from the first gives x1 = 0. Then subtracting the third from the first
gives x2 = 0. Continuing this procedure, subtracting the kth equation from the first will give xk = 0 until
the last equation simply reads xn = 0. Thus x = 0 is the only solution to Ax = 0 and so A is invertible.
(One can also show by induction on the dimension n that det(A) = 1, though this is a bit tricky).

Problem 26. Let In by the n× n identity matrix and let Jn be the n× n matrix with all entries equal
to 1. Determine the values of σ ∈ R so that In + σJn is invertible. Find (In + σJn)−1 for such σ.

Solution. Note that regardless of σ 1 is an eigenvalue of In + σJn of multiplicity at least n − 1 since
(In + σJn)− 1 · In = σJn has rank 1. Next, note that ~1 = (1, 1, . . . , 1)t satisfies

(In + σJn)~1 = (1 + σn)~1,

so the other eigenvalue is 1 + σn. Thus the matrix is invertible unless σ = −1/n. To find the inverse,
consider

(In + σJn)(In + τJn) = In + (σ + τ + nστ)Jn.

If σ 6= −1/n, we can take τ = − σ
1+nσ to see that

(In + σJn)−1 = In −
σ

1 + nσ
Jn.


