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Week 6: Miscellaneous Topics (Analysis, Topology, Probability, etc)
Practice Problem Solutions

Problem 1. Where is the function f(x) =

{
x/2, x ∈ Q
x/3, x ∈ R \Q

}
continuous?

Solution. The given function is continuous only at x = 0. Indeed, if x 6= 0, then take two
sequences {qn} ⊂ Q and {rn} ⊂ R \Q approaching x (we can find each sequence since both Q and
R \Q are dense in R) and we will find that

x

2
= lim

n→∞
f(qn) 6= lim

n→∞
f(rn) =

x

3
,

which shows that f is discontinuous by the sequential criterion theorem. Now at x = 0, we can
take any ε > 0 and set δ = ε/3 to find that |f(x)− f(0)| < ε when |x− 0| < δ, which shows that
f is continuous at x = 0.

More generally, if D ⊂ R is such that D and R \ D are both dense in R (which is true when
D = Q) and we define

f(x) =

{
g(x), x ∈ D
h(x), x ∈ R \D

}
where g, h : R→ R are continuous, then f will be continuous at x ∈ R iff g(x) = h(x).

Problem 2. Fix x > 0. Give a rigorous meaning to

√
x+

√
x+
√
x+ · · · by proving that the

sequence
a0 =

√
x, an =

√
x+ an−1, n = 1, 2, 3, . . .

converges and finding the limit. What happens as x↘ 0?

Solution. We prove that an is increasing an bounded above, and thus converges by the monotone
convergence theorem. Note that a1 =

√
x+
√
x ≥
√
x = a0. Now assume that an ≥ an−1 for some

n ∈ N. Then

x+ an ≥ x+ an−1 =⇒
√
x+ an ≥

√
x+ an−1 =⇒ an+1 ≥ an.

This induction proves that an is an increasing sequence.

Next, we see that a0 =
√
x =

√
4x
2 ≤ 1+

√
1+4x
2 . Again, assume that an ≤ 1+

√
1+4x
2 for some

n ∈ N. Note that(
1 +
√

1 + 4x

2

)2

=
1 + 2

√
1 + 4x+ 1 + 4x

4
= x+

1 +
√

1 + 4x

2
.

Then

an+1 =
√
x+ an ≤

√
x+

1 +
√

1 + 4x

2
=

√(
1 +
√

1 + 4x

2

)2

=
1 +
√

1 + 4x

2
.

This shows by induction that an is bounded above. Hence there is a limit an → a ∈ R. Taking the
limit on both sides of the recursive relationship, we see

a =
√
x+ a =⇒ a2 − a− x = 0 =⇒ a =

1±
√

1 + 4x

2
.



Christian Parkinson GRE Prep: Miscellaneous Practice Problem Solutions 2

Note that each member of the sequence is positive and thus the limit is positive, and so we can
ignore the false root. This shows that for x > 0,√

x+

√
x+
√
x+ · · · = 1 +

√
1 + 4x

2
.

However, this formula fails for x = 0. If x = 0, then an = 0 for all n and thus the limit is zero,
which does not agree with the limit of the above formula as x↘ 0.

Problem 3. Which of the following does not define a metric on R?

(A) δ(x, y) =
{

0, x=y,
2, x 6=y. (B) ρ(x, y) = min{|x− y| , 1} (C) σ(x, y) = |x−y|

3

(D) τ(x, y) = |x−y|
|x−y|+1 (E) ω(x, y) = (x− y)2

Solution. (A) is a scaled version of the discrete metric. (B) and (D) are bounded versions of the
standard metric (i.e., the generate the standard topology even though they give bounded distance
between points). (C) is a scaled version of the standard metric. (E) is not a metric because the
triangle inequality is not satisfied. Indeed, let x = 0, y = 1

2 , z = 1. Then

1 = ω(x, z) 6≤ ω(x, y) + ω(y, z) =
(
1
2

)2
+
(
1
2

)2
= 1

2

Problem 4. Define fn(x) = xn

1+xn for x ∈ [0, 1], n ∈ N. Which of the following is true?
(A) The sequence {fn} converges pointwise on [0, 1] to a limit function f .
(B) The sequence {fn} converges uniformly on [0, 1] to a limit function f .

(C) lim
n→∞

∫ 1

0
fn(x)dx =

∫ 1

0

(
lim
n→∞

fn(x)
)
dx

Solution. At x = 1, we see that fn(1) = 1/2 for all n ∈ N so fn(1)→ 1/2. For any x ∈ [0, 1), we
have

0 ≤ fn(x) =
xn

1 + xn
≤ xn → 0, as n→∞.

Thus f converges pointwise to the function

f(x) =

{
0, x ∈ [0, 1)

1/2, x = 1.

Now each fn is continuous, but this limit is discontinuous - we conclude that the convergence is
not uniform since the uniform limit of continuous functions remains continuous. However, since
the domain is compact and each fn is bounded by 1 for all x ∈ [0, 1], the limit of the integrals is
the integral of the limit. More explicitly

0 ≤
∫ 1

0
fn(x)dx =

∫ 1

0

xndx

1 + xn
≤
∫ 1

0
xndx =

1

n+ 1
→ 0

and
∫ 1
0 f(x)dx = 0 so

∫ 1
0 fn(x)dx→

∫ 1
0 f(x)dx. Thus we conclude that (A) and (C) are true, while

(B) is false.

Problem 5. Suppose that f : (0, 1)→ R is uniformly continuous. Let {xn} be a sequence in (0, 1)
such that xn → 0. Show that the sequence {f(xn)} converges. [Note: generalizing this fact, one
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can show that if U ⊂ Rn is open, then f : U → R is uniformly continuous iff f can be continuously
extended to the closure U .]

Solution. Define the sequence yn = f(xn). Let ε > 0. Since f is uniformly continuous, there is
δ > 0 such that |x− y| < δ =⇒ |f(x)− f(y)| < ε for all x, y ∈ [0, 1] (that is, δ is independent of
x, y). Since xn → 0, in particular xn is a Cauchy sequence so there is N ∈ N such that |xn − xm| < δ
whenever n,m ≥ N . But then

|yn − ym| = |f(xn)− f(xm)| < ε

when n,m ≥ N . This shows that yn is a Cauchy sequence and thus converges to some limit
f0 ∈ R. [This concludes the proof, but performing the same construction for zn = fn(wn) where
wn is an arbitrary sequence in (0, 1) tending to 1, we find that zn → f1 ∈ R. Then defining
F (0) = f0, F (1) = f1, and F (x) = f(x), for x ∈ (0, 1), we see that F is a continuous extension of
f to [0, 1] which gives an idea of how prove the final note in the problem statement.]

Problem 6. Find examples of a function f : (−1, 1)→ R which is
(A) continuous but not uniformly continuous,
(B) uniformly continuous but not Lipschitz continuous,
(C) Lipschitz continuous but not differentiable,
(D) differentiable but not continuously differentiable.

Solution. For (A), let f(x) = 1
1−x . Then f is continuous, but it is not uniformly continuous. In-

deed, the sequence f(1−1/n) = n does not converge, which shows by Problem 4 (contrapositively)
that f is not uniformly continuous.

For (B), consider f(x) =
√

1− x. Then f is uniformly continuous because it is can be continu-
ously extended to the compact set [−1, 1]. However, f is not Lipschitz continuous. Indeed, notice
that f is differentiable on (−1, 1) with f ′(x) = 1

2
√
1−x →∞ as x→ 1. Thus for any K > 0, we can

find δ > 0 such that f ′(x) > K when x ∈ (1− δ, 1]. But then by the mean value theorem, for any
x, y ∈ (1− δ, 1] x 6= y, we can find c between x and y such that

|f(x)− f(y)| =
∣∣f ′(c)∣∣ |x− y| > K |x− y|

which shows that K is not a Lipschitz constant for f . Since K > 0 was arbitrary, we conclude that
f is not Lipschitz continuous.

For (C), consider f(x) = |x|. Then f is Lipschitz continuous with Lipschitz constant 1 by the
reverse triangle inequality, but f is not differentiable at x = 0.

For (D) consider the function

f(x) =

{
x2 sin

(
1
x

)
, x ∈ (−1, 0) ∪ (0, 1),

0, x = 0.

Certainly f is differentiable for x 6= 0 since it is the product of smooth functions in that domain.
Indeed, we see that

f ′(x) = 2x sin

(
1

x

)
− cos

(
1

x

)
, x ∈ (−1, 0) ∪ (0, 1).

Also at x = 0, we see that

lim
x→0

f(x)− f(0)

x− 0
= lim

x→0
x sin

(
1
x

)
= 0
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which shows that f ′(0) = 0. Thus f is differentiable for all x ∈ (−1, 1). However, the derivative
is discontinuous because along the sequence xn = 1√

(2n+1)π
, we have f ′(xn) = 1 6→ 0 = f ′(0) even

though xn → 0.

Problem 6

Problem 7. Let f be the function whose graph is pictured on the
right. Find the supremum of the set{

n∑
k=1

|f(xk)− f(xk−1)| : {xk}nk=0 is a partition of [0, 12]

}

Solution. This notation is a bit hard to parse, but what we are
really measuring when taking this supremum is the variation in f ;
i.e., how much f changes. Since the extreme points are roughly
f(0) = 1, f(2) = 3, f(5) = −2, f(8) = 5 and f(12) = 3, the total
change in f is

|3− 1|+ |(−2)− 3|+ |5− (−2)|+ |3− 5| = 2 + 5 + 7 + 2 = 16,

so 16 is the supremum of the set.
As an aside, for any function f : [a, b]→ R one can define

TV (f, [a, b]) ..= sup

{
n∑
k=1

|f(xk)− f(xk−1)| : {xk}nk=0 is a partition of [a, b]

}
.

For many such f this number will be +∞, but one defines the set BV ([a, b]) to be the functions f
such that TV (f, [a, b]) <∞; these are the functions of bounded (pointwise) variation. And one can
prove that if f : [a, b]→ R is continuously differentiable, then

TV (f, [a, b]) =

∫ b

a

∣∣f ′(x)
∣∣ dx.

Problem 8. Which of the following exist?
(A) A continuous function from (0, 1) onto [0, 1]
(B) A continuous function from [0, 1] onto (0, 1)
(C) A continuous bijection from (0, 1) to [0, 1]

Solution. For (A), such a function does exist. Indeed, f(x) = sin(100x) is an example of such a
function.

For (B), no such function exists. The continuous image of a compact set remains compact, so
a continuous function cannot map [0, 1] onto (0, 1) since [0, 1] is compact and (0, 1) isn’t.

For (C), again no such function exists. If f : (0, 1) → [0, 1] is a continuous surjection, there
is a ∈ (0, 1) such that f(a) = 0 and b ∈ (0, 1) such that f(b) = 1. But then by the intermediate
value theorem, f maps the interval I = [min{a, b},max{a, b}] onto [0, 1]. Thus it cannot be in-
jective since for any x ∈ (0, 1)\I, the image f(x) will already have been met by another value y ∈ I.



Christian Parkinson GRE Prep: Miscellaneous Practice Problem Solutions 5

Problem 9. Let ∅ 6= K ⊆ Rn. Which of the following statements are true?
(A) If K is compact, then every continuous real-valued function on K is bounded.
(B) If every continuous real-valued function on K is bounded, then K is compact.
(C) If K is compact, then K is connected.

Solution. (A) is true; indeed, defining Un = f−1([−n, n]) for n ∈ N, we see that Un forms an open
cover of K. By compactness there is a finite subcover and since the sets Un are nested, we will
have K ⊂ UN for some N ∈ N. But then |f(x)| ≤ N for all x ∈ K.

(B) is true. We prove this by contrapositive. If K is not compact, then it is either not closed
or not bounded (by the Heine-Borel theorem). If K is not closed, then there is x0 ∈ Rn such
that x0 6∈ K but x0 is a limit point of K. Then putting f(x) = 1

‖x−x0‖ gives a function which is

continuous and unbounded on K. If K is unbounded, then f(x) = ‖x‖ is continuous and unbounded
on K. Contrapositively, if every continuous function on K is bounded, then K is compact.

(C) is false. The set K = [−2,−1]n ∪ [1, 2]n is compact but not connected.

Problem 10. Find continuous functions f, g : [0,∞)→ R such that
(A)

∫∞
0 f(x)dx converges but f(x) 6→ 0 as x→∞,

(B) {g(t+ n)}n∈N converges to zero as n→∞ for any fixed t ≥ 0 but g(x) 6→ 0 as x→∞.
Bonus: show that neither of these is possible if we stipulate that f, g are uniformly continuous.

Solution. We can do these both with one example.
For n ∈ N, define the functions fn : [0,∞)→ R by

fn(x) =


2n2(x− n), n ≤ x < n+ 1

2n2 ,

2n2
(
n+ 1

n2 − x
)
, n+ 1

2n2 ≤ x < n+ 1
n2 ,

0, otherwise.

Then the graph of each fn is a spike of height 1 on the interval [n, n+1/n2). Let f(x) =
∑∞

n=1 fn(x)
for x ∈ [0,∞), so that f has each one of these spikes [f is pictured in Figure 2 below]. Each spike
has integral

∫∞
0 fn(x)dx = 1

2 ·
1
n2 · 1 = 1

2n2 and so we see∫ ∞
0

f(x)dx =
∞∑
n=1

1

2n2
<∞.

Likewise if t = 0, 1 then t + n is an integer for any n ∈ N and so f(t + n) = 0 for all n so
limn→∞ f(t + n) = 0. If t ∈ (0, 1), then there is some N ∈ N such that t > 1/N2. But then
f(t+ n) = 0 for all n ≥ N and so limn→∞ f(t+ n) = 0. Hence {f(t+ n)}n∈N goes to zero for any
t ∈ [0, 1].

However, limx→∞ f(x) 6= 0 because the sequence xn = n+ 1
2n2 satisfies xn →∞ but f(xn) = 1

for all n ∈ N.

Problem 11. Which of the following necessarily holds for Q ⊆ A ⊆ R?
(A) If A is open, then A = R (B) If A is closed, then A = R (C) If A is uncountable,

then A = R
(D) If A is uncountable, then A is open (E) If A is countable, then A is closed
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Figure 2: f , Problem 9

Solution. (A) is false, and this is a bit surprising because if A is open and contains each rationals,
then it contains open intervals around each rational. Now if each interval had a fixed length, then
we would have A = R by density of Q. However, the intervals around the rationals could get
infinitesimally small so that A 6= R. To make this really rigorous, one needs to know a bit about
the Lebesgue measure, but the idea is this: let {qn}∞n=1 = Q and let A = ∪∞n=1(qn− 1

2n+1 , qn+ 1
2n+1 ).

Then certainly Q ⊂ A, but the total length of A satisfies

`(A) ≤
∞∑
n=1

`

((
qn −

1

2n+1
, qn +

1

2n+1

))
=

∞∑
n=1

1

2n
= 1,

whereas the length of R is +∞. Thus A 6= R so (A) is false. [Indeed, replacing 1/2n+1 with ε/2n+1

for arbitrarily small ε > 0, this argument shows that the Lebesgue measure of Q [or any other
countable set] is zero).

(C) is false: take A = (0, 1) ∪Q.

(D) is false: take A = (0, 1) ∪Q.

(E) is false: take A = Q.

(B) is true: if A is closed and contains the rationals, then it contains the closure of the rationals
which is R, thus A = R.

Problem 12. Let d(x, y) =
{

0, x=y,
1, x 6=y. Which of the following hold in the metric space (R, d)?

(A) {x} is open for each x ∈ R (B) Every subset of R is closed
(C) If d′ is the ordinary metric on R, then the identity map (R, d)→ (R, d′) is continuous
(D) If d′ is the ordinary metric on R, then the identity map (R, d′)→ (R, d) is continuous

Solution. This is the discrete metric which generates the discrete topology on R; thus every set
is open. If every set is open, then every set is closed as well. Thus (A) and (B) are true.
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For (C) and (D), consider any space X with two topologies τ1, τ2. Recall the identity ι :
(X, τ1) → (X, τ2) is continuous iff ι−1(V ) ∈ τ1 whenever V ∈ τ2. But ι−1(V ) = V . Thus the
identity is continuous iff V ∈ τ1 whenever V ∈ τ2. rephrasing yet again, the identity is continuous
iff τ2 ⊂ τ1 which is true iff τ1 is finer than τ2. The discrete topology is finer than any other topology
on R so (D) is false while (C) is true.

Problem 13. Let X,Y be topological spaces and let f : X → Y be continuous. Show that f(K) is
compact in Y for any compact set K ⊆ X. In short: show that the continuous image of a compact
set is compact.

Solution. Suppose that K ⊂ X is compact. We want to prove that f(K) is compact, so take an
open cover {Vi} of f(K). Since f is continuous, we have that Ui = f−1(Vi) are open in X. Now if
x ∈ K, then f(x) ∈ f(K) which means that f(x) ∈ Vi for some i. But if f(x) ∈ Vi then x ∈ Ui.
This shows that {Ui} forms an open cover of K in X. Since K is compact, there is a finite subcover
U1, . . . , Un. But then since K ⊂ ∪nk=1Uk, we have f(K) ⊂ ∪nk=1f(Uk) = ∪nk=1Vk, and so V1, . . . , Vn
forms a finite subcover of f(K). Since {Vi} was an arbitrary open cover of f(K) and we were able
to extract a finite subcover, we conclude that f(K) is compact.

Problem 14. Let τ be the topology on R generated by sets of the form {[a, b) : a, b ∈ R, a < b}.
Which of the following are true in the topological space (R, τ)?

(A) [0, 1] is compact (B) [0, 1] is Hausdorff (C) [0, 1] is connected

Solution. (A) is false. In the lower limit topology, compact sets are at most countable. Indeed,
suppose that ∅ 6= C ⊂ R is compact in this topology. Take any c ∈ C and consider the sets

U0 = [c,∞), Un =
(
−∞, c− 1

n

)
, n ∈ N.

Then {Un}∞n=0 is an open cover of C. Since C is compact, there is a finite subcover. Since c 6∈ Un
for n ≥ 1 and since Un ⊂ Un+1 for all n ≥ 1, this finite subcover can be reduced to {U0, UNc} for
some Nc ∈ N. Then C ⊂ (−∞, c − 1

Nc
) ∪ [c,∞). In particular (c − 1

Nc
, c] contains no points from

C except for c. Thus if c, d ∈ C, we have d 6∈ (c− 1
Nc
, c] and c 6∈ (d− 1

Nd
, d], meaning that(

c− 1

Nc
, c

]
∩
(
d− 1

Nd
, d

]
= ∅.

Now for each c ∈ C, we can find a rational qc ∈ (c − 1
Nc
, c]. Since these sets are pairwise disjoint,

the map c 7→ qc is injective and hence C has at most the cardinality of Q.
(B) is true. Indeed, take x, y ∈ [0, 1], x 6= y and wlog let x < y. Then the sets Ux = [x, x+y2 )

and Uy = [x+y2 , y + 1) show that [0, 1] is Hausdorff.
(C) is false. Take A = [0, 12) and B = [12 , 2). These are disjoint open sets such that [0, 1] ⊂ A∪B

which shows that [0, 1] is disconnected.

Problem 15. Let S ⊂ [0, 1] × [0, 1] consist of all points (x, y) ∈ [0, 1] × [0, 1] such that x or y or
both is irrational. Which of the following is true (with respect to the standard topology on R2)?

(A) S is open (B) S is closed (C) S is connected (D) S is totally disconnected (E) S is
compact
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Solution. (A) is false. By density of Q2 in R2, any open ball centered at a point in S contains a
point with rational coordinates which is not in S.

(B) is false. By density of (R \ Q)2 in R2, S doesn’t contain all its limit points since we can
take a sequence of points in S converging to a point with rational coordinates which is not in S.

(E) is false. S is not compact since it is not closed.
(C) is true. In fact this set is path-connected. Consider for any (x, y) ∈ S, one of x or y is

irrational. If x is irrational then the vertical line Vx = {(x, t) : t ∈ [0, 1]} is contained in S. Then
we can travel along this line to the point (x, π/4). But the entire horizontal line Hπ/4 = {(t, π/4) :
t ∈ [0, 1]} is contained in S and so we can then travel along this line to (π/4, π/4). Likewise, if
y is irrational, we can travel along the horizontal line Hy to the point (π/4, y) and then along
the vertical line Vπ/4 to the point (π/4, π/4). This shows that any point can be connected by a
continuous path to (π/4, π/4), but then by composing paths, any two points can be connected to
each other by a continuous path.

(D) is false since (C) is true.

Problem 16. Suppose X,Y are i.i.d. random variables taking value n ∈ N with probability 1
2n .

What is the probability that max{X,Y } > 3?

Solution. We see that max{X,Y } > 3 iff X > 3 or Y > 3 and

Prob{X > 3 or Y > 3} = 1− Prob{X ≤ 3 and Y ≤ 3} = 1− Prob{X ≤ 3}Prob{Y ≤ 3}

where the last step follows by independence. Now

Prob{X ≤ 3} =

3∑
i=1

Prob{X = i} =
1

2
+

1

4
+

1

8
=

7

8
,

and likewise for Y since they are identically distributed. Thus

Prob{X > 3 or Y > 3} = 1−
(

7

8

)2

=
15

64
.

Problem 17. Two random numbers are drawn uniformly and independently from {1, . . . , 10}.
What is the probability that neither is the square of the other?

Solution. The only squares less than 10 are 1, 4, 9. Thus the only time that one is a square of
the other is if we draw (1, 1), (2, 4), (4, 2), (3, 9), (9, 3). Since all couples (i, j), i, j = 1, . . . , 10 are
equally likely (since the distributions are independent and uniform), the probability that neither is
the square of the other is 95

100 .

Problem 18. If X is drawn uniformly from [0, 3] and Y is drawn uniformly from [0, 4], what is
the probability that X < Y ?

Solution. We can split this up into the cases that Y ∈ [0, 3] or Y ∈ (3, 4]. Since these cases are
disjoint and cover all possibilities, the law of total probability says that

Prob{X < Y } = Prob{X < Y |Y ≤ 3}Prob{Y ≤ 3}+ Prob{X < Y |Y > 3}Prob{Y > 3}.
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Given that Y ≤ 3, Y is distributed uniformly in [0, 3] and so by symmetry, the probability that
X < Y is 1/2. If Y > 3, then probability that X < Y is 1. Thus we have

Prob{X < Y } =
1

2
· 3

4
+ 1 · 1

4
=

5

8
.

This fits with our intution: it should be slightly more like that X < Y than X ≥ Y since Y is
drawn from a larger set.

Problem 19. Two players take turns tossing a fair coin; the winner is the first who tosses heads.
What is the probability that the first player wins?

Solution. Let H denote heads and T denote tails. If the first player wins, the sequence of events
must be one of

{H,TTH, TTTTH, TTTTTTH, . . .}.

That is, there must be 2n tails tossed and then a heads, where n = 0, 1, 2, . . .. Since the tosses are
independent and the coin is fair, the probability of one such event occuring is

(
1
2

)2n ·(12). Summing
over all n, we find that player one wins with probability

∞∑
n=0

(
1

2

)2n

·
(

1

2

)
=

1

2

∞∑
n=0

1

4n
=

1

2
· 1

1− 1/4
=

2

3
.

There is another clever way to reason through this problem without doing the computation.
Let p denote the probability that player one wins. Since the game is essentially reset if the first
two tosses are tails, we have

p =
1

2
+

1

4
p

where 1
2 represents the probability that player one wins on the first toss and 1

4p represents the
probability of reaching the reset point and player one winning thereafter. Solving this gives p = 2/3.

Problem 20. Let X be a random variable with density function f(x) = 3
4(1− x2), for x ∈ [−1, 1]

(and f(x) = 0 elsewhere). What is the standard deviation of X?

Solution. Recall, the variance of X if given by

Var(X) = E(X2)− E(X)2

and since X has distribution function f , we see that

E(g(X)) =

∫
R
g(x)f(x)dx.

Thus

E(X) =

∫
R
xf(x)dx =

3

4

∫ 1

−1
(x− x3)dx = 0 since the integrand is odd.

Next,

E(X2) =

∫
R
x2f(x)dx =

3

4

∫ 1

−1
(x2 − x4) =

3

4

(
2

3
− 2

5

)
=

3

4
· 4

15
=

1

5
.
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The standard deviation is the square root of the variance so StDev(X) = 1√
5
.

Problem 21. How many surjective functions are there from {1, 2, 3, 4} to {1, 2, 3}?

Solution. Since there are 3 choices for the image of each of the four elements, there are 34 = 81
total functions from {1, 2, 3, 4} to {1, 2, 3}. It is easier to count the functions that are not surjective.
If a function is not surjective, then it maps {1, 2, 3, 4} into {1, 2}, {1, 3} or {2, 3}. There are three
choices for which set to map into and there are 24 maps in each case, thus at first glance it seems
there are 48 total maps. However, we have double counted the constant maps which send the set
to a single point (the map x 7→ 1 for all x ∈ {1, 2, 3, 4} was counted as a map from {1, 2, 3, 4} into
{1, 2} and counted again as a map from {1, 2, 3, 4} into {1, 3}). Adjusting for this double counting,
we find there are 45 non-surjective maps and thus 81− 45 = 36 surjective maps.

Problem 22. For how many integers k does k! end in exactly 99 zeros?

Solution. We find that k! ends with n zeros when k! = K · 10n = K · 2n · 5n where K is not
divisible by 10. There will always be more factors of 2 than factors of 5 in k! so we gain a zero
when we pass a multiple of five. Thus there will be 5 numbers k such that k! ends in exactly 99
zeros and they have the form k = 5N + ` for ` = 0, 1, 2, 3, 4 for some N ∈ N.

Actually, it is possible that there are no natural numbers k such that k! ends in exactly 99 zeros.
It is possible that some k − 1 is such that (k − 1)! ends in exactly 98 zeros and that k is divisible
by 25, meaning that at least two extra zeros get added and k! ends in 100 or more zeros. This is
somewhat unlikely. Indeed, only 1/5 multiples of 5 is divisible by 25, and 1/25 of all multiples of
5 are divisible by 125, etc. which means (roughly speaking) that for a given number n, there is a

∞∑
j=1

1

5j
=

1/5

1− 1/5
=

1

4

chance that there are no k ∈ N such that k! ends with exactly n zeros. To give a definitive answer,
one would need to check that 99 is not such an n. Indeed, 99 doesn’t get skipped. Counting
multiples of 5, we see that for each 100 numbers, {100`+ 1, 100`+ 2, · · · , 100(`+ 1)}, ` = 0, 1, 2, 3,
there are twenty multiples of 5, four of which are divisible by 25, and possibly one of which is
divisible by 125. Thus, 100! ends in 24 zeros, 200! ends in 49 zeros, 300 ends in 74 zeros and 400!
ends in 99 zeros (as do 401!, 402!, 403! and 404!).

Problem 23. Let f : X → Y . Write the negation of “f is bijective” in terms of the following
statements:

P: For each x ∈ X, there is y ∈ Y such that f(x) = y
Q: For each y ∈ Y , there is x ∈ X such that f(x) = y
R: There exist x1, x2 ∈ X with x1 6= x2 and f(x1) = f(x2)

Solution. P is just the statement that f is a function. Q is the statement that f is surjective. R
is the statement that f is not injective. Thus

f is bijective ⇐⇒ Q and (¬R).

So the negation is
f is not bijective ⇐⇒ (¬Q) or R.



Christian Parkinson GRE Prep: Miscellaneous Practice Problem Solutions 11

Problem 24. Let f : R→ R and let X,Y ⊆ R. Which of these are necessarily true?
(A) f(X ∩ Y ) = f(X) ∩ f(Y ) (B) f(X ∪ Y ) = f(X) ∪ f(Y )
(C) f−1(X ∩ Y ) = f−1(X) ∩ f−1(Y ) (D) f−1(X ∪ Y ) = f−1(X) ∪ f−1(Y )

Here for A ⊆ R, f(A) = {f(x) : x ∈ A} and f−1(A) = {x ∈ R : f(x) ∈ A}.

Solution. Pullbacks play nicely with both unions and intersections. Pushforwards only play nicely
with unions. Thus (B), (C) and (D) are true while (A) is false.

I won’t prove that (B), (C), (D) are true (it isn’t too difficult), but to see that (A) is false,
consider the function f : R → R, f(x) = x2 for x ∈ R and let X = (−1, 0) and Y = (0, 1). Then
X ∩ Y = ∅ and so f(X ∩ Y ) = ∅. However, f(X) = (0, 1) and f(Y ) = (0, 1) so f(X ∩ Y ) = ∅ 6=
(0, 1) = f(X) ∩ f(Y ).

Problem 25. Let S, T, U be nonempty sets and f : S → T , g : T → U be functions such that
g ◦ f : S → U is one-to-one. Prove that f is one-to-one. Show by example that g need not be
one-to-one.

Solution. If f is not one-to-one, there are x, y ∈ S, x 6= y such that f(x) = f(y). But then
(g ◦ f)(x) = g(f(x)) = g(f(y)) = (g ◦ f)(y) shows that g ◦ f is not one-to-one. Contrapositively,
if g ◦ f is one-to-one, then so is f . The latter part of the problem is a bit tricky because it seems
false at first glance. However, if g ◦ f is one-to-one, we can only guarantee that g is one-to-one on
the range of f ; it may not be one-to-one on the entirety of T . Indeed, let S = T = U = R and take
f(x) = ex and g(x) = x2 for x ∈ R. Then (g ◦ f)(x) = e2x for x ∈ R is a one-to-one function while
g is not a one-to-one function.

Problem 26. Let A,B be subsets of some set X. Define S0 = {A,B}. For i ≥ 0, inductively
define Si+1 to contain all sets of the form C ∪D,C ∩D, and X \ C where C,D ∈ Si. What is the
largest possible number of distinct sets contained in ∪∞i=0Si?

Solution. This is another problem where half the battle is parsing the notation. It is easiest to
understand by drawing and labeling a Venn diagram as in Figure 3 below. The idea is that any set
that can be built out of a sequence of unions, intersections and complements of the two sets A,B
can be written as of at most four disjoint pieces:

X1 = A \B, X2 = B \A, X3 = A ∩B, X4 = X \ (A ∪B).

Thus the total number of sets in the final collection ∪∞i=0Si is the number of distinct combinations
of X1, X2, X3, X4. Since there are four sets and for each set, one can decide to include or exclude
the set, there are 24 = 16 different combinations so this is the maximum number of distinct sets in
∪∞i=0Si (there could be less: if A ⊂ B and B \ A then there are only 8 sets; if A = B, then there
are only 4).

[More generally, if we perform this same procedure starting with S0 = {A1, . . . , An}, then there
can be as many as 2n distinct regions in the Venn diagram, and thus as many as 22

n
distinct sets in

∪∞i=0Si. This hints at the fact that ∪∞i=0Si has cardinality two steps larger than S0 (if S0 has cardi-
nality ω, then ∪∞i=0Si has cardinality 22

ω
). Indeed, in measure theory, the set ∪∞i=0Si constructed

in this manner is called the σ-algebra generated by S0. The concept of a σ-algebra gives us the
minimum amount of structure to reasonably discuss integration in the same way that a topology
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gives us the minimum amount a structure to reasonably discuss continuity. A famous property of
σ-algebras is that they are never countably infinite: a σ-algebra is either finite or uncountable.]

Figure 3: Venn diagram, Problem 26

Problem 27. What is the output of the following algorithms?

Solution.

(A) 53, 4, 1, 0

(B) 2, 3, 4, 5, . . . , 87, 88

(C) 56, 34, 12


