ANALYSIS NOTES

Notes by Eamon Quinlan

REAL ANALYSIS

§0: Some basics

Liminfs and Limsups

e Def.- Let (z,) C R be a sequence. The limit inferior of (z,) is defined by

liminf z, = lim inf z,,
n—00 n—o0 m>n

and, similarly, the limit superior of (z,) is

limsupx, = lim sup x,,.
n—00 n=0 m>n

¢ Remark.-
liminf z,, = sup inf z,,
n—00 n m>n

lim sup ,, = inf sup x,,.
n—00 n m>n

e Def.- A number £ € RU{—o00,+00} is a subsequential limit of (x,) if there exists a subsequence of z,
that converges to . We denote by F the set of subsequential limits of (z,,). ¢ Lemma.-

liminf(z,) =inf £

lim sup(z,,) = sup E.
In fact, F is closed so we can replace the above with min and max.

e Lemma.- For any sequence (z,), liminf(x,) < limsup(z,) and (z,) converges to L if and only if
liminf(z,) = L = lim sup(z,,).



§1: Measure Theory [SS]

Preliminaries

e Thm.- Every open subset O of R can be written uniquely as a disjoint union of countably many open
intervals.

e Thm.- Every open subset O of R? can be written as a countable union of almost disjoint closed cubes.

The exterior measure

o Def.- If E C R? is any subset, the exterior measure of E is

E):=inf{ Y 1Q;|: | J Qj 2 E,Q; cubes
j=1

n=1

e Prop.- (Properties of the exterior measure)

(i) If Ey C E5 then m(E1) < my(FE2).

(ii) If B = U2, E; then m. (E) < 37, m.(Ej).

(iii) If £ C R? then m,(E) = inf m,(O) where the infimum is taken over all open O that contain E.
(iv) If E = E1 U Ey and d(E1, E2) > 0 then m.(E) = mu(E1) + m.(Es).

(v) If E is an almost disjoint union of countably many cubes Q; then m.(E) = >, m.(Q;).

Measurable sets and Lebesgue measure

o Def.- A subset E of R? is measurable if for all € > 0 there exists an open @ C R? with £ C O and
m.(O\ E) <e.

e Prop.- (Properties of measurable sets)

(i) Every open set of R? is measurable.

(ii) If m.(E) = 0 then E is measurable — thus if F' C E and m(FE) = 0 then F is measurable.
(iii) A countable union of measurable sets is measurable.

(iv) Closed sets are measurable.

(v) The complement of a measurable set is measurable.

(vi) A countable intersection of measurable sets is measurable.

e Thm.- If £ = U32, Ej; is a countable union of disjoint measurable sets then m(E) = >, m(E;). Cor.-
Suppose E1, Es, ... are measurable. If E; ' E then lim; o m(E;) = m(E). If E; \, E and m(E;) <
for some j then lim;_,o m(E;) = m(E).

e Thm.- Suppose E C R? is measurable. Then for every € > 0:
(i) There exists an open O with E C O and m(O — F) < e.

(ii) There exists a closed F with F C E and m(E — F) <e¢

(iii) Furthermore, if m(E) < oo then the F in (ii) can be taken to be compact.

(iv) If m(E) < oo then there exists a finite union F' = UY_;Q; of closed cubes with m(EAF) < e

Borel subsets

e Def.- The Borel o-algebra of R?, denoted B(R?), is the o-algebra generated by the open subsets of RY.
A G-delta (or Gs) set is a countable intersection of open sets. An F-sigma (or F,,) set is a countable union
of closed sets.



e Thm.- Let £ C R? be any subset. The following are equivalent.
(i) E is Lebesgue measurable.

(ii) E differs from a G by a set of measure 0.

(iii) F differs from an F, by a set of measure 0.

e Cor.- The Lebesgue o-algebra is the completion of the Borel o-algebra.

Measurable functions
¢ Remark.- We allow functions to take the values —oo and oo.
e Def.- A function f on R? is measurable if, for all a € R, f~!([~o0,a)) is measurable.

e Lemma.- The following are equivalent for a function f.
(i) f is measurable. (i) f~!(0O) is measurable for every open O C R.
(iii) f~1(F) is measurable for every closed F C R.

e Prop.- (Properties of measurable functions)

(i) If f is measurable on R? and finite-valued and ® : R — R is continuous then ® o f is measurable.

(i) If {fx} is a sequence of measurable functions then the pointwise sup, inf, limsup, and liminf are all
measurable. Then pointwise limit, when it exists — at least a.e. — is also measurable.

(iii) If f is measurable then f* (k > 1) is also measurable.

(iv) If f and g are measurable and finite-valued then f+g and fg are also measurable. (iv) If f is measurable
and f(z) = g(x) for a.e. x then g is measurable.

Approximations by simple functions

e Thm.- If f is a non-negative measurable function then there exists an increasing sequence of non-negative
simple functions {¢,} that converges pointwise to f.

e Thm.- If f is any measurable function then there exists a sequence of simple functions {¢x}3>, with
|ok(x)] < |pr+1(x)| that converges pointwise to f.

e Thm.- If f is any measurable function then there exists a sequence of step functions (simple functions
made with rectangles only) that converges pointwise to f almost everywhere.

Littlewood’s three principles

e Remark.- Littlewood’s three principles are:

(i) Every set is nearly a finite union of intervals. (c.f. some theorem from before)

(ii) Every function is nearly continuous. (c.f. Lusin’s theorem)

(iii) Every convergent sequence is nearly uniformly convergent. (c.f. Egorov’s theorem)

Thm.- (Egorov) Let {fx} be a sequence of measurable functions supported on E where m(E) < oo such
that fi(x) — f(x) for a.e. . Then for every € > 0 there exists a closed subset A C E with m(E — A.) <€
such that fr — f uniformly on A.. Example.- The convergence of f,(z) = 2™ on [0, 1].

Thm.- (Lusin) Suppose f is a measurable, finite-valued function on E where E is of finite measure. Then
for every € > 0 there exists a closed F, C E with m(E — F.) < e wuch that f|r is continuous. Remark.-
This is different than saying f is continuous on Fe, e.g. xg on [0,1].



§2: Integration Theory [SS]

The Lebesgue Integral

e Def.- Given a simple function ¢ = )", cxx g, we define its integral to be

/(b = ;ckm(Ek).

Fact.- This is independent of the representation.

e Def.- Now given a function f that is (i) bounded and (ii) supported on a set E of finite measure, and
given a sequence {¢,} of simple functions (i) bounded (uniformly) by some M (ii) supported on the set F
with (iii) ¢, (z) — f(x) for a.e. x then we define the Lebesgue integral of f by

/ f:=lim [ ¢,.
n—oo
Fact.- The limit always exists, and it does not depend on the sequence ¢,. If f is measurable then such a

sequence always exists.

e Def.- If f is a (i) measurable, (ii) non-negative (but we allow infinite values) then its Lebesgue integral

is given by
f=sup / g
Jr=s

where the sup is taken over all measurable bounded g that are supported on a set of finite measure. We say
such a function is Lebesgue integrable if the integral is finite.

e Def.- Now given a measurable function f such that (i) |f| is integrable then we define its Lebesgue
integral by
[r=[r- 1

e Prop.- The Lebesgue and Riemann integrals agree for Riemann-integrable functions defined on closed
intervals.

e Fact.- All the definitions above agree.

e Prop.- The integral of Lebesgue integrable functions is linear, additive, monotonic and satisfies the triangle
inequality.

e Prop.- Suppose f is integrable on R%. Then for every e > 0
(i) There exists a ball B C R such that [, |f| <e.
(ii) There exists a § > 0 such that [} |f| < e whenever m(E) < 4.

e Lemma.- (Fatou) Suppose {f,} is a sequence of non-negative measurable functions. If lim, o fn(z) =
f(x) for a.e. = then

f< liminf/fn.

n— oo

e Cor.- Suppose f is a non-negative measurable function and {f,} is a sequence of non-negative measurable
functions with f,,(z) < f(z) and f,(x) — f(x) for a.e. . Then

lim | fn, = / /-
n—oo
e Cor.- (Monotone Convergence Theorem) Suppose { f,} is a sequence of non-negative measurable function

with f,,  f. Then
ILm fn:/f.



e Thm.- (Dominated Convergence Theorem) Suppose { f,} is a sequence of measurable functions such that
fu(x) = f(z) ae. x. If | fr(x)] < g(z), where g(x) is integrable then

/|fnff|%0 as n — 0o,

/fn—>/f as n — oo.

e Counterexample.- Consider the function f,(x) = 1/n. Then f,, — f where f = 0. This provides a
counterexample for Dominated Convergence when the f,, are not dominated by an L' function, and also a
counterexample to monotone convergence when f,, \, f — and thus —f,, / —f, i.e. negative functions.

and thus

e Prop.- (Tchebyshev’s inequality) Let f be integrable. Then for all a > 0
i

[e%

m{z: |f(z)] > a}) <

The space L'

e Def.- The space L' = L'(R?) is the space of equivalence classes of Lebesgue integrable functions, where
we regard two functions as equivalent if the are equal almost everywhere. Remark.- The integral is still
defined as an operator in L' and ||f|| = [|f| defines a norm on L', and thus d(f,g) = [|f — g| defines a
metric on L.

e Thm.- (Riesz-Fischer) The vector space L! is complete in its metric. Moreover, any Cauchy sequence
{f»} in L' has a subsequence that converges pointwise almost-everywhere.

e Thm.- The following families are dense in L?.

(i) Simple functions.

(ii) Step functions (characteristic functions of finite union of rectangles).
(iii) Continuous functions with compact support.

e Thm.- Let f(x) be integrable, h € R, § € Ryg. Then f(x — h), f(dz), f(—=z) are integrable and
(i) [ flx—h) = [ f(z).

(ii) [ f(6x) = o7 [ f(=).

(iif) [ f(=z) = [ f(2).

Fubini’s Theorem

e Def.- For this section we set R? = R% x R%, and thus a point on R? takes the form (z, y) where x € R,
y € R¥%. If f(z,y) is a function on R? we define the slice f¥(z) := f(x,y), which is then a function
on R4 and f,(y) similarly. Given a set E C R? denote its slice by EY = {z € R% : (z,y) € E} and
E,={yeR®: (z,y) € E}.

e Thm.- (Fubini) Suppose f(z,y) is integrable on R%. Then, for almost every y € R,
i) The slice fY is integrable on R%.

(
(ii) The function [ga, f¥(z)dx is integrable on R%2.
(iii

iii) Moreover,
L ([, swaie)an= [ sace.
]RdQ ]Rdl ]Rd



e Thm.- (Tonelli) Suppose f(z,y) is a non-negative measurable function on R?. Then, for almost every
y € R,

(i) The slice f¥ is meaburable on R,

(ii) The function [ga, f¥(z)dx is measurable on R%2.

(iii

iii) Moreover,
/ ( f(w,y)dw> dy =/ [z, y)d(z,y)
]Rd2 Rdl Rd

(where now this can be an equality co = c0).
e Cor.- If E is a measurable set in R? then, for almost all 4 € R?, the slice

EY = {zx e R™" : (2,y) € E}
is a measurable subset of R%. Moreover, m(EY) is a measurable function of R* and m(E) = [54, m
e Prop.- If E = E; x E5 is a measurable subset of R? and m,(E>) > 0 then E; is measurable.
e Lemma.- If E; C R%, Fy C R% are any sets, then

m*(El X Eg) S m*(El)m*(Eg)

(with the understanding that 0 - co = 0).

e Prop.- If E;, E5 are measurable subsets of R%, R% resp. then E = E; x E, is a measurable subset of
R? and, moreover,
m(E) = m(E1)m(Es).

(where 0 - 0o = 0). Cor.- If f(z) is any function on R% then f(z,y) := f(x) is measurable in R?. Cor.-
Suppose f() is a non-negative function on R¢ and let

A:={(z,y) eRIxR:0<y < f(z)}.

Then (i) A is measurable in R*! if and only if f is measurable on R? and, whenever these hold, (ii)

= [ f(=)

Convolutions
o If f, g are measurable functions on R¢ then f(x — y)g(y) is measurable in R24.

o If, furthermore, f, g are integrable on R? then f(x — y)g(y) is integrable in R4,

(f * 9)a /fx—

e The function (f * g)(z) is well-defined for almost all .

e The convolution of f and g is

e f x g is integrable whenever f and g are, and

1f*gllr < Il llgler

with equality whenever f and g are non-negative.



§3: Differentiation and Integration [SS]

Differentiation of the integral.
e Notation.- Throughout this section, B always denotes balls.

e Remark.- For a continuous function f on R? we have
[ )y = @
im ——— = f(x).
m(B)—»0om(B) [p vy
B>x

e Def.- Given an integrable function f on R? we define its Hardy-Littlewood maximal function f* by

*(x) = su 1
Fr(@) = swp s [ If il

B>x

e Thm.- (Maximal theorem) Suppose f is integrable. Then:
(i) f* is measurable.

(ii) f*(z) < oo for a.e. z.

(iii) f*(x) satisfies

mfe € BY: ') > o)) < 2l

for all @ > 0, where A = 3%. Proof idea.- (i) is easy, (ii) follows from (iii). (iii) is hard and uses a
version of Vitali covering argument. Remark.- (iii) is a weak-type inequality, i.e. weaker than inequality
on L'-norms, by Tchebyshev’s inequality. Observe we could have defined f*(z) using balls centered at z.
Then this inequality still holds with the same A = 3¢ — see Folland. Remark.- The function f*(z) may not
be L' — see f*(x) when f(z) = X[o,1]-

e Thm.- (Lebesgue differentiation theorem) If f is integrable then

1
m(B)0 m(B)
B>z

/ fy)dy = f(z) for ae. x.
B

Cor.- f*(z) > |f(x)] for a.e. x.

e Def.- A measurable function f is locally integrable if, for all balls B, fxp is integrable. We denote by
L} (R%) the space of locally integrable functions. Remark.- The Lebesgue differentiation theorem holds

loc
for locally integrable functions.

e Def.- If F is a measurable set and € R? we say x is a point of Lebesgue density of E if

m(BNE)

B>x

=1

e Cor.- (Lebesgue’s density theorem) Suppose F is a measurable subset of R?. Then:

(i) Almost every x € E is a point of Lebesgue density of E.

(ii) Almost every = ¢ F is not a point of Lebesgue density of E — and, in fact, the limit above is 0 for almost
allz ¢ E.

e Def.- If f is locally integrable on RY the Lebesgue set of f consists of all points z € R? for which

f(z) < 0o and
1
li — - dy = 0.



Remark.- If f is continuous at = then z is in the Lebesgue set of x. If = is in the Lebesgue set of = then

o o
im /B F)dy = f(z).

m(B)—0 m(B)
Bax
e Remark.- The Lebesgue set of f depends on the choice of representative.

e Cor.- If f is locally integrable on R? then almost every point belongs to the Lebesgue set of f.

e Def.- A collection of sets {U,} is said to shrink regularly to z, or to have bounded eccentricity at z,
if there is a constant ¢ > 0 such that for each U, there is a ball B with z € B, U, C B and m(U,) > em(B).
(Perhaps we also need that x is contained in arbitrarily small U,’s? Folland has a more clear discussion).

e Cor.- Suppose f is locally integrable on R?. If {U,} shrinks regularly to = then

UBL

for all = in the Lebesgue set of f — and thus for almost every .

Approximations to the identity

Def.- A family {Ks}s-0 of integrable functions on R? are an approximation to the identity if:
(i) [ Ks(z)dz = 1.

(ii) |Ks(z)| < A6~

(iii) | Ks(2)| < Ag/]x|*.

for all § > 0 and € R?%, where A is a constant independent of §.

Thm.- If {K;} is an approximation to the identity and f is integrable on R¢ then
(f*Ks)(x)— f(x) as 0—0

whenever x is in the Lebesgue set of f — and thus for a.e. x.

Thm.- With the hypotheses of the previous theorem, we also have

I(f*Ks)— fllgr =0 as 4§ —0.

Remark.- Recall f x K are integrable.

Differentiability of functions

e Def.- Let «y be a parametrized curve in the plane given by z(t) = (x(t), y(t)) where a < ¢ < b and z(t), y(t)
are continuous real valued functions on [a,b]. Then 7 is rectifiable if there exists some M > 0 such that,
for any partition a = tg < t1 < --- <ty =b of [a, b],

N
> Iz(ty) )| < M.
Jj=1

The length L(v) of v is the supremum over all partitions of the left-hand side — or, equivalently, the infimum
of all M that satisfy the above.



e Def.- Similarly, if F : [a,b] — C is continuous and a =ty < t; < -+ < tiy = b then the variation with
respect to this partition is given by

IR () — F(ti-0).

The function F' is said to be of bounded variation if there exists some uniform bound for all variations.

e Thm.- A real-valued function F on [a,b] is of bounded variation if and only if F' is the difference of two
increasing (not necessarily strictly) bounded functions.

e Thm.- If F is of bounded variation on [a,b] then F is differentiable almost everywhere. Cor.- If F is
increasing and continuous then F” exists almost everywhere. Moreover, F’ is measurable, non-negative and

b
/ F'(z)dz < F(b) — F(a).
In particular, if F' is bounded then F’ is integrable. Remark.- There is a continuous function for which the

left-hand side is 0 and the right-hand side is 1, called the Cantor function.

e Def.- A function F on [a,b] is absolutely continuous of, for any € > 0, there exists some ¢ > 0 such
that

N N
Z |F(by) — F(ar)| <€ whenever Z(bk —ag) <0
k=1 k=1
where the (ag,bx), k = 1,..., N, are disjoint intervals. Remark.- Absolute continuity implies uniform (and

thus plain-old) continuity. It also implies bounded variation. The total variation is then also absolutely
continuous and thus F is the difference of two continuous monotonic functions. If F(z) = [ f(y)dy, where
f is integrable, then F' is absolutely continuous.

e Thm.- If F is absolutely continuous on [a,b] then F’ exists almost everywhere and it is integrable.
Moreover,

b
F(b) - F(a) = / F'(y)dy.

Conversely, if f is integrable on [a,b] there exists an absolutely continuous function F such that F' = f
almost everywhere and, in fact, we may take F'(z) = ff fly)dy.

e Thm.- If F is a bounded increasing function on [a, b] then F” exists almost everywhere.



§4: Abstract Measure and Integration Theory [SS]

Abstract measure spaces

e Def.- Let X be a non-empty set. A o-algebra M is a non-empty collection of subsets of X that is
closed under complements and countable unions. Remark.- A o-algebra M is then closed under countable
intersection as well. Moreover, X, ¢ € M.

e Def.- Let M be a c-algebra. A measure on M is a function g : M — [0, 00] such that whenever
Ey, Es,... is a countable disjoint family of sets in M then

w(J Ba) =D (En).

Remark.- Observe then that u(¢) = 0 and thus the above formula holds for finite unions too.

e Def.- A measure space is a triple (X, M, u) where X is a set, M is a o-algebra on X and p is a measure
on M. It is said to be complete if whenever F' € M is such that u(F) =0 and E C F then F € M. It is
said to be o-finite whenever X is a countable union of sets of finite measure.

Exterior measures, Carathéodory’s theorem

e Def.- If X is a non-empty set, an exterior measure or outer measure pu, on X is a function from all
subsets of X to [0, oo] that satisfies:

(i) pe() = 0.

(iii) If E4, Es, ... is a countable family of sets then

e (

J

nC8

E) <3 palEy).

A subset F C X is then called Carathéodory measurable, or measurable if for every A C X we have

i (A) = pu(ENA) + p (BN A).

e Thm.- Given an exterior measure u, on X the collection M of measurable subsets is a o-algebra, and p,
restricted to M is a measure. Moreover, the resulting measure space is complete.

Metric exterior measures
e Def.- If (X, d) is a metric space the Borel c-algebra Bx = B on X is the smallest o-algebra that contains

all open sets of X. An exterior measure p, on X is a metric exterior measure if

px (AN B) = e (A) + pe(B)  whenever d(A,B) > 0.

e Thm.- If i, is a metric exterior measure on X then the Borel sets in X are measurable — thus, u. restricted
to By is a measure.

e Def.- Given a metric space X, a measure on the Borel sets is called a Borel measure.

e Prop.- Suppose the Borel measure p is finite on all balls in X of finite radius. Then for any Borel set E an
any € > 0 there is an open set O and a closed set F' with F C F C O such that u(F —FE) <€, p(O—FE) < e.

10



The extension theorem

e Def.- If X is a non-empty set, an algebra on X is a non-empty collection A of subsets closed under
complements and finite unions — and thus under finite intersection. A pre-measure is a function po : A —
[0, oo] with:

(i) po(9) =0,

(ii) If Eq, B, ... is a countable disjoint collection of sets in A with U2, E,, € A — e.g. finite union — then

oo

tio U E,) = ZUO(EVL)-

=1

e Thm.- (Carathéodory’s Extension Theorem) Suppose A is an algebra on X and pug is a premeasure on
A. Let M be the o-algebra generated by A. Then there exists a measure y on M that extends pg. This
extension is unique whenever (X, ug) is o-finite.

Integration on a measure space
e Fix throughout this section a o-finite measure space (X, M, p).

e Def.- A function f on X (with values on R U {#+o00}) is measurable if for all a € R f~!([~00,a)) is
measurable. Remark.- If {f,} is a sequence of measurable functions then the pointwise sup, inf, limsup
and liminf and lim — when it exists — are measurable. If f, g are measurable and of finite value then f + g
and fg are measurable.

e Def.- A simple function on X is a function of the form ¢(x) = Zszl arX g, where a; € R and the Ej
are measurable.

e Thm.- A measurable function f is the pointwise limit of a sequence {¢y} of simple functions. Moreover,
the ¢, may be taken such that |¢g(z)| < |prr1(x)| for all k. Remark.- We use o-finiteness here, but the
following results don’t (I think?).

e Thm.- (Egorov’s) If {fi} is a sequence of measurable functions defined on a measurable set E of finite
measure and fi(x) — f(z) almost everywhere then for each ¢ > 0 there is a measurable set A. C E with
w(E — A.) < e such that fr — f uniformly on A..

e Def.- Given a simple function ¢ = Y arxg, on X, [y ¢dp = 3" app(Ey). Given a non-negative function

f on X we define
/ fdu ::sup{/ odp 0 < ¢ < f, ¢ simple }
X X

Finally, given any function f, [\ fdu = [y fydp— [ f-dp.
e Def.- A measurable function f on X is integrable if [ |f|du < cc.

e Lemma.- (Fatou) If {f,} is a sequence of non-negative measurable functions on X then
/hminf fndp < liminf/fndp.
n— oo n— oo

e Thm.- (Monotone convergence) If {f,} is a sequence of non-negative measurable functions on X with

fn A f then
/fdu:nlirr;o/fndu.

11



e Thm.- (Dominated convergence) If {f,} is a sequence of measurable functions with f,(z) — f(x) a.e.
and such that |f,(z)] < g(x) for an integrable function g then

/|fffn|d,u%0 as n— 0o

/fdﬂ:nlingo/fndu.

e Def.- The space L*(X,u) is the space of integrable functions modulo functions that vanish everywhere.
The space L?(X,p) is the space of square-integrable (usually C-valued) functions modulo functions that
vanish everywhere.

and thus

The spaces L' and L?

e Thm.- The space L'(X,u) is a complete normed vector space. The space L?(X,u) is a (possible non-
separable) Hilbert space.

Product measures and a general Fubini theorem
e In this section, we fix two complete and o-finite measure spaces (X1, My, 1) and (Xa, Mo, pi2).

e Def.- A measurable rectangle, or rectangle for short, is a subset of X; x X5 of the form A x B where
A C X; and B C X, are measurable. Remark.- The collection A of sets in X that are finite unions of
disjoint rectangles is an algebra of subsets of X.

e Prop.- There is a unique pre-measure po on A such that pg(A x B) = 1 (A)ua(B) for all rectangles A x B.

e Def.- Let M be the o-algebra generated by A. Then g extends to a measure p; X pg on M. Given E in
M, z1 € X7 and x4 € X the slices are defined by E,, := {z2 € X5 : (z1,22) € E} and E*? := {z; € X; :
(x1,29) € E}.

e Prop.- If F is measurable in X; x X5 then E*2 is pj-measurable for a.e. x5 € X5. The function p; (E*2)
is po-measurable and

/ 1 (B dp = (1 x pi2)(E).
X

Remark.- Of course, a similar statement holds after replacing X; with Xs.

e Thm.- (Generalized Fubini) In the above setting, suppose f(z1,x2) is integrable on (X1 X Xo, 11 X ).
Then:

(i) For a.e. xo € X5 the function f(z1,x2) is pi-integrable (in particular, measurable).

(ii) The function le f(z1,z2)dpy is po-integrable.

(iii)
/ ( f(xlaxQ)dH1> dug = / f(xl,xg)d(,ul X /.Lg).
X X1 X1xXo

e Thm.- (Generalized Tonelli) Again in the above setting, if f(x1,x2) is non-negative and measurable on
(X1 X XQ,ILtl X ,ug) then:

(i) For a.e. zo € X5 the function f(x1,x2) is pi-measurable.

Eu) The function le f(x1,x2)dpy is po-measurable.

/ ( f(331,£62)du1> dpg = / flxy, z2)d(pr X p2).
x; \Jx, X1 % X

12



§5: L? spaces [F]

Basic Theory
e Fix a measure space (X, M, u). On this section we consider complez-valued functions.

e Def.- If f is a measurable function on X and 0 < p < oo then define its p-norm to be

1/p
1l = ( /. Iflpdu> .

Define the space LP(X, M, ) to be the set of measurable functions f with ||f|l, < oo — modulo almost
everywhere equality. Remark.- L? is indeed a vector space.

e Lemma.- (Hélder’s inequality) Suppose 1 < p < oo and p~! + ¢! =1 — we say p and ¢ are H6lder
conjugates. If f and g are measurable functions on X then

1Fgll < 1 fllpllgll-

In particular, if f € L? and g € LY then fg € L'. Moreover, equality holds precisely when a|f|? = 3|g|? for
some «, 8 not both zero.

e Thm.- (Minkowsky’s Inequality) If 1 < p < co and f,g € LP then | f + g|l, < ||fll, + llgll,- Cor.- For
1 < p < oo, L? is a normed vector space.

e Thm.- For 1 <p < oo, LP is a Banach space — i.e. it is complete.
e Prop.- For 1 < p < oo, the set of simple functions with support of finite-measure is dense in LP.
The case p = 0

Def.- If f is measurable on X we define its L°°-norm by

[flloc := inf{a > 0Lu({x : [f(x)] > a} = 0)}

(with the convention inf = 0o). We define L>°(X, M, 1) to be the space of measurable functions f: X — C
with || f]|ec < 0o — modulo everywhere equivalence. Remark.- f is in L if and only if there is a bounded
measurable function g with f = g a.e.

Thm.-
(i) If f and g are measurable functions on X then || fg|l1 < ||f|l1]lgllcc — extension of Hélder’s inequality.
(ii) || - loo is @ norm on L°°.

(iii) | fn = flloo — 0 if and only f, — f uniformly outside a set of measure zero.
(iv) L* is a Banach space. (v) The simple functions are dense in L*°.

Relations between LP-spaces

Prop.- If 0 <p<g<r <oothen L?C LP + L"; that is, each f € L? is the sum of a function in L? and a
function in L".

Prop.- f 0<p<qg<r <oothen LPNL" C L9, with

I£llg < IFIRNAI

where A € (0,1) is such that ¢=! = Ap~ ! + (1 = A\)r—L.
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COMPLEX ANALYSIS

§2: Cauchy’s Theorem and Applications [SS]

Goursat’s theorem

e Thm.- (Goursat) If  is an open set in C, T' C Q is a triangle whose interior is also contained in € then

/Tf(z)dz =0

whenever f(z) is holomorphic in Q. Remark.- In fact, the proof only requires that f/(z) exists on Q — i.e.
no continuity required.

e Cor.- Same for any contour that can be bisected into triangles — e.g. rectangle.

Local existence of primitives and Cauchy’s theorem on a disk
e Thm.- A holomorphic function on an open disk has a primitive on the disk.

e Thm.- (Cauchy, on a disk) If f is holomorphic in a disk then

[yf(z)dz =0

for any closed curve v on the disk.

Cauchy’s integral formulas

e Thm.- Suppose f is holomorphic in an open set containing a disk D and its boundary C, where C' has
positive (i.e. counterclockwise) orientation. Then

_ 1 f(Q)
1@ =55 /c %
Proof idea.- Keyhole contour.

e Remark.- The same proof applies to any contour that admits a “keyhole”-ification. Observe the integral
is zero for any z outside of the contour.

e Cor.- If f(z) is holomorphic in § then it has infinitely many derivatives in Q. Moreover, if ) contains a
disk D and its boundary C' then for all z in the interior of D

f(")(z) - m/c(gff))nﬂdc'

T 2w
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e Cor.- (Cauchy inequalities) If f is holomorphic in a neighbourhood of the closure of a disk D with boundary
C' centered at zg with radius R then

|
7)) < 2N

where || f||c denotes the supremum of f on the circle C.

e Cor.- (Liouville’s theorem) If f is entire and bounded then f is constant. Proof idea.- Show f’ = 0.

e Cor.- (Fundamental Theorem of Algebra) Every non-constant polynomial has a zero in C.

e Thm.- Suppose f is holomorphic in a neighbourhood of the closure of a disk D centered at zy. Then f

admits a power series expansion
o0

F(2) =) an(z = 20)"

n=0

for all z € D and the coefficients are given by
1
an = af(n)(«zo)
e Cor.- The zeros of a non-constant holomorphic function f(z) on a domain are isolated.

e Cor.- If f is holomorphic on a domain Q and its zeros accumulate in © then f = 0. If f(z),g(z) are
holomorphic on 2 and the points where they agree accumulate in € then f = g.

Further applications

e Thm.- (Morera) Suppose f is a continuous function in the open disk D such that for all triangles T

contained in D
/ f(z)dz = 0.
T

Then f is holomorphic. Proof idea.- The function f has a holomorphic primitive.

e Cor.- If {f,}52, is a sequence of holomorphic functions on  that converge uniformly to a function f on
compacts then f is holomorphic.

e Thm.- Under the hypothesis of the previous corollary, {f/} converges to f’ uniformly on compacts.

e Thm.- Let F(z, s) be a continuous function on € x [0, 1] where Q C C is open, and suppose that F(z, sq)
is holomorphic for every sg € [0, 1]. Then

f(z):= /01 F(z,s)ds

is holomorphic.

e Thm.- (Symmetry principle) Let £ be an open subset of C that is symmetric with respect to the real line,
let Q% be the part of Q lying (strictly) in the upper half plane, Q= be the part lying (strictly) in the lower
half plane and I = Q NR. Suppose fT (resp. f7) is holomorphic in Q% (resp. Q7) and that it extends
continuously to I. Suppose ft and f~ agree on I. Then the function

fr(z)if z€QF
f2)=<fTfx)=f(2)ifzeT
f(z)ifze Q™
is holomorphic on €.

e Cor.- (Schwarz’s reflection principle) Suppose f is holomorphic in QF and that it extends continuously
onto I, on which it is real valued. Then f can be extended to a holomorphic function F' on (), where
F(z)=f(z) for z€ Q.
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e Thm.- (Runge’s approximation theorem) Any function holomorphic on a neighbourhood of a compact
set K can be approximated uniformly on K by rational functions whose singularities are in K¢. If K¢ is
connected, any function holomorphic in a neighbourhood of K can be approximated uniformly on K by
polynomials.

§3: Meromorphic Functions and the Logarithm [SS]

Zeros and poles

e Def.- A point singularity of a function f is a point zg such that f is defined on a deleted neighbourhood
of 2z, but not at zg. A point 2 is called a zero of f if f(zp) =0.

e Thm.- Suppose f is a holomorphic function on €2, and that zy € Q is a zero of f. Then there exists a
unique integer n and a holomorphic function g on  — with g(zp) # 0 — such that f(z) = (z — 20)"g(2).

e Def.- In the theorem above, n is called the multiplicity of f at zg.

e Def.- We say f has a pole at zq if it is defined in a deleted neighbourhood of zy and 1/f, defined to be
zero at zg, is holomorphic on a full neighborhood of zj.

e Thm.- If z; is a pole of f then there is a unique integer n and a holomorphic function h(z) defined on a
neighbourhood of zg, with h(zp) # 0, such that f(z) = (z — 20) ""h(z) on a neighbourhood of z.

e Def.- From the above theorem, n is called the order of the pole zj.

e Thm.- If f(z) has a pole of order n at zy then, on a neighbourhood of zy,
f2)=an(z—20)"+ - 4a1(z—2)"" +G(2)

where G(z) is holomorphic on a neighbourhood of z.

e Def.- In the above theorem, a_,,(z — 20) ™+ -+ +a_1(2 — 29) ! is called the principal part of f(z) at
zo. The coeflicient a_; is called the residue of f at zy, denoted res,, f = a_;.

e Thm.- If f has a pole of order n at zg then

res,, f = % lim ( d )nl (= — 20)"f(2).

n—1)! =2 \ dz

The residue formula

e Thm.- Suppose f is holomorphic in an open set containing a circle C' and its interior, except for a pole
2o inside of C'. Then

/ f(2)dz = 2mires,, f.
c

e Cor.- (Residue formula) Suppose f is holomorphic in an open set containing a toy contour v and its
interior, except for poles at z1,..., zy inside 4. Then

N
/ f(z)dz = 2mi Zreszl f.
Y k=1
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Singularities and meromorphic functions

e Thm.- (Riemann’s theorem on removable singularities) Suppose f is holomorphic on € except at a point
2o in Q. If f is bounded in Q\ {zp} then zj is a removable singularity of f. Proof idea.- By using a keyhole,
can show Cauchy’s formula still works, and this extends holomorphically onto zy. Cor.- Suppose f has an
isolated singularity at the point zg. Then zq is a pole of f if and only if |f(2)] = oo as z — 2.

e Thm.- (Casorati-Weierstrass) Suppose f is holomorphic in the punctured disc D \ {20} and that f has
an essential singularity at zg. Then f(D \ {z20}) is dense on the complex plane. (c.f. Picard’s theorem for a
stronger result).

e Def.- A function f is meromorphic in Q if it is holomorphic in © \ {z;} and has at most poles at the
{zi}. Remark.- The {z;} must be isolated and, in particular, they form a countable collection.

e Def.- Suppose f is holomorphic for all |z| > R where R > 0. We say that f has a pole at infinity if
F(z) = f(1/z) has a pole at z = 0. Similarly, f has a removable singularity (resp. essential singularity)
at infinity if F(z) has a removable (resp. essential) singularity at z = 0. A meromorphic function on C that
is holomorphic at infinity, or has a pole at infinity, is said to be meromorphic in the extended complex
plane.

e Thm.- The meromorphic functions in the extended complex plane are the rational functions. Rational
functions are determined up to a constant by the location and multiplicity of the zeros and poles. Remark.-
We really need the function to be meromorphic on C to start with — consider exp(1/z).

Argument principle and applications

e Thm.- (Argument principle) Suppose f is meromorphic in an open set containing a circle C' and its
interior. If f has no poles and never vanishes on C then

R NG
2mi Jo f(2)

where the zeros and poles are counted with multiplicity. Proof idea.- f'(z)/f(z) has at most simple poles.
Analyze the residues.

dz = #{ zeros of f inside C' } — #{ poles of f inside C' }

e Thm.- (Rouché’s theorem) Suppose f and g are holomorphic in an open set containing a circle C' and its

interior. If
|f(2)] > |g(2)| forall z€C

then f and f + ¢ have the same number of zeros inside of C.
e Thm.- (Open mapping theorem) Non-constant holomorphic functions are open.

e Thm.- (Maximum modulus principle) Non-constant holomorphic functions on a domain £ cannot attain
a maximum in Q. Cor.- If f is holomorphic in a bounded domain Q and it extends continuously onto 92
then f attains its maximum in 9.

e Thm.- (Strict maximum principle) Suppose f(z) is a holomorphic function on any domain Q with |f(z)| <
M for all z € Q. If | f(z0)] = M for some 2y € § then f(z) is constant on 2. Remark.- This version does
not require f(z) to extend continuously onto the boundary. This is in [G].

Homotopies and simply connected domains

e Thm.- If f is holomorphic in 2 and vy ~ 7; (i.e. o and ~; are homotopic paths in ) then

()dz= [ f(2)dz.

Yo 71

e Thm.- Any holomorphic function in a simply-connected domain has a primitive. Cor.- If f is holomorphic
in a simply-connected domain 2 then f7 f(2)dz =0 for a closed loop ~.
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The complex logarithm

e Remark.- Let Q be a simply connected domain with 1 € Q and 0 ¢ Q. Then the function 1/z has a
primitive logg(z) in Q — called a branch of the logarithm — satisfying:

(i) el°ga(2) = 7 for all z € Q.

(ii) F(r) = logr whenever r is a real number near 1.

We can do just fine without 1 € £ as long as we pick our constant carefully.

e Remark.- This allows us to define power functions z* where o € C for simply connected domains that
don’t contain 0.

e Thm.- Let f(z) be a nowhere vanishing function holomorphic in a simply connected domain §2. Then
there exists a function g(z) on € such that

f() = 9.
Proof idea.- Take g(z) = [ f'(2)/f(2)dz + co.

Hurwitz’s Theorem [G]

e Def.- A sequence {fi(z)} of holomorphic functions on a domain  is said to converge normally to
f(z) if {fx(2)} converges uniformly on each closed disk contained in € — or, equivalently, on every compact
set contained in €. Also equivalently, if around every point in 2 there is a neighbourhood on which the
convergence is uniform.

e Thm.- (Hurwitz) Suppose {fx(z)} is a sequence of analytic functions that converges normally to f(z) on
a domain Q, and that f(z) has a zero of order n at zp € . Then there exists a p > 0 such that for k£ > 0
the function fi(z) has exactly n zeros inside the disk {|z — 29| < p}, counting multiplicities.

e Def.- A holomorphic function on €2 is univalent if it is one-to-one — i.e. if it is conformal onto some other
domain.

e Cor.- If a sequence {fx(z)} of univalent functions converges normally to f(z) then f(z) is either univalent
or constant.

§4: The Schwarz Lemma [G]

The Schwarz Lemma

e Thm.- (Schwarz Lemma) Let f(z) be analytic for |z| < 1 and suppose that |f(z)| <1 for all |z| < 1 and
f(0) =0. Then |f(2)| < |z| for |z| < 1. Furthermore, if equality holds at some point zg # 0 then f(z) = Az
for some |A| = 1. Proof idea.- Write f(z) = zg(z) and apply maximum principle to g(z) for |z| < r where
0<r<l1.

e Cor.- If f(z) is analytic for |z — 29| < r and |f(2)| < M for |z — 2| < r then |f(2)| < M/r|z — 20|, where
equality holds if and only if f(z) is a multiple of z — z.

e Cor.- Let f(z) be analytic for |z] < 1. If | f(2)] < 1 for |z] < 1 and f(0) = 0 then |f'(0)] < 1 with equality
if and only if f(z) = Az for some |A| = 1.
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Conformal Self-Maps of the Unit Disk
e Lemma.- If g(z) is a conformal self-map of the (open) unit disk D with g(0) = 0 then g(z) = 2.
e Thm.- The conformal self-maps of the unit disk D are of the form

_ g 20
f(z)=e 1—az
where 0 < ¢ < 27 and a € D. Moreover, ¢ and a give a one-to-one correspondence between conformal
self-maps of D and D x D — where a = f~1(0), ¢ = arg f/(0).

e Thm.- (Pick’s lemma) If f(z) is analytic and |f(z)] < 1 for |z| < 1 then

< O <)

1—|z[?

Proof idea.- Use a conformal self-map so that, after composition, we map 0 to 0 and then use Schwarz’s
Lemma.

e Def.- A finite Blaschke product is a rational function of the form

; z—aq Z— ap,
B(z) = ¢
(2) =e (1 —alz) <1 —an2>

where the a¢; € D and 0 < ¢ < 27.

e Thm.- If f(z) is continuous for |z| < 1 and analytic for |z| < 1 and |f(z)] =1 for |z] = 1 then f(z) is a
finite Blaschke product. Proof idea.- Consider B(z), the finite Blaschke product that has the same zeros
— with same multiplicities — as f(z). Then B(z)/f(z) and f(z)/B(z) extend holomorphically D — D with
modulus 1 on the boundary.

§5: Conformal Mappings [G]

e Remark.- The Mobius transformation z — (2 —4)/(z + 4) maps the upper half-plane H conformally onto
the unit disk D.

e A sector can be mapped onto H by the help of a power function, and from there to the unit disk if
necessary.

e A strip can be rotated to be a horizontal strip. Then e* maps horizontal strips to sectors.

e A lunar domain is a domain whose boundary consists of two circles (or line) segments. If zy, z; are the
points of intersection, map 2o to 0 and z; to oo using a Md&bius transformation. We then get a sector.
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§6: Compact families of meromorphic functions [G]

Arzela-Ascoli Theorem

e Def.- Let E C C be a subset and F be a family of functions on E. We say F is equicontinuous at 2y € F
if for all € > 0 there exists some § > 0 such that whenever |z — 29| < d then for all f € F |f(2) — f(20)| < €.
We say F is uniformly bounded on FE if there is some M > 0 such that |f(z)| < M for all z € E and
ferF.

e Thm.- (Arzela-Ascoli - C-version) Let 2 C C be a domain and F be a family of continuous functions on
Q that is uniformly bounded on compacts. Then the following are equivalent:

(i) F is equicontinuous on €.

(ii) F is normally sequentially compact, i.e. every sequence in F has a subsequence that converges
normally.

e Thm.- (Arzela-Ascoli - C-version) Let © C C be a domain and F be a family of continuous functions from
D to C. Then the following are equivalent:
(i) F is equicontinuous on €.

(ii) F is normally sequentially compact.

e Remark.- In the last theorem we use the spherical metric on C. Observe that no boundedness assumptions
are needed on the C-version — I suspect because there is a general version where we only need the target to
be compact.

Compactness of families of functions

e Lemma.- If F is a family of analytic functions on a domain Q such that F’, the family of derivatives of
functions in F, is uniformly bounded then F is equicontinuous at every point in F.

e Thm.- (Montel — weak version) Suppose F is a family of analytic functions on a domain 2 that is
uniformly bounded on compacts. Then every sequence in F has a normally convergent subsequence. Proof
idea.- Using Cauchy estimates we show F’ is uniformly bounded on compacts, thus F is equicontinuous.
Then use Arzela-Ascoli to obtain a subsequence that converges — but this sequence may depend on the
compact, so we need to use a diagonalization argument.

e Sample application: Fix a domain €2 and a point zy € 2. We consider the family F of analytic functions
fon Q with |f(2)] <1 for all z € Q. Then the supremum sup{|f’(z0)| : f € F} is attained. (c.f. Ahlfors
function).

Marty’s Theorem

e We extend the notion of normal convergence to meromorphic functions by using the spherical metric on

C.

e Thm.- If a sequence {f,(z)} of meromorphic functions converges normally to f(z) on a domain Q then
f(z) is either meromorphic or f(z) = oco. If the initial {f,,(z)} were analytic then either f(z) is analytic or

f(z) = oo.
e Def.- A family F of meromorphic functions on €2 is said to be a normal family if every sequence in F
has a subsequence that converges normally in (2.

e Def.- Given a meromorphic function f, regarded as a map ) — C, its spherical derivative at the point

z is
()
&) = e
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e Lemma.- If fy — f normally on 2 then f,f — f# normally on €.

e Thm.- (Marty) A family F of meromorphic functions on {2 is normal if and only if the family of spherical
derivatives is bounded uniformly on compacts.

Strong Montel and Picard

e Thm.- (Zalcman’s Lemma) Suppose F is a family of meromorphic functions on a domain € that is not
normal. Then there exist points z,, € Q with z, — z € Q, p, > 0 with p, — 0 and functions f,, € F such
that g, (¢) := fu(zn + pn) converges normally to a meromorphic function g(¢) on C with ¢#(0) = 1 and
g7 (¢) <1 for ¢ € C.

e Def.- A family F of meromorphic functions on Q omits a value wo € C if wy ¢ f(Q) for all f € F.

e Thm.- (Montel — strong) A family F of meromorphic functions on a domain € that omits three values of
C is normal.

e Def.- Suppose f is meromorphic on a punctured neighbourhood of zy. A value wy € C is an omitted
value at z if there exists some § > 0 such that f(z) # wp for all 0 < |z — 29| < §. Thus wq is not an
omitted value if there is a sequence z, — zo with f(z,) = wo.

e Thm.- (Picard’s big theorem) Suppose f(z) is meromorphic on a punctured neighborhood of zy. If f(z)
omits three values at zo then f(z) extends to be meromorphic at zg — i.e. 2 is a pole or removable.

e Thm.- (Picard’s little theorem) A nonconstant entire function assumes every value in the complex plane
with at most one exception.
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