- 1. Prove that the closed interval [0, 1] is connected.
- 2. Show that the set Q of rational numbers in \mathbb{R} is not expressible as the intersection of a countable collection of open subsets of \mathbb{R} .
- 3. Suppose that X is a compact metric space (in the covering sense of the word compact). Prove that every sequence $\{x_n : x_n \in X, n = 1, 2, 3...\}$ has a convergent subsequence. [Prove this directly. Do not just quote a theorem.]
- 4. (a) Define uniform continuity of a function $F: X \to \mathbb{R}$, X a metric space.
 - (b) Prove that a function $f:(0,1)\to\mathbb{R}$ is the restriction to (0,1) of a continuous function $F:[0,1]\to\mathbb{R}$ if and only if f is uniformly continuous on (0,1).
- 5. State some reasonable conditions under which a function $f: \mathbb{R}^2 \to \mathbb{R}$ satisfies

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right)$$

everywhere on \mathbb{R}^2 and prove this equality under the conditions you give.

6. Suppose $f: \mathbb{R}^3 \to \mathbb{R}$ is a continuously differentiable function with grad $f \neq \vec{0}$ at $\vec{0}$ ($\vec{0} = (0, 0, 0)$ in \mathbb{R}^3). Show that there are two other continuously differentiable functions $g: \mathbb{R}^3 \to \mathbb{R}$, $h: \mathbb{R}^3 \to \mathbb{R}$ such that the function

$$(x,y,z) \rightarrow (f(x,y,z),g(x,y,z),h(x,y,z))$$

from \mathbb{R}^3 to \mathbb{R}^3 is one-to-one on some neighborhood of $\vec{0}$.

7. Suppose $F: \mathbb{R}^2 \to \mathbb{R}^2$ is continuously differentiable and that the Jacobian matrix of F is everywhere nonsingular. Suppose also that $F(\vec{0}) = \vec{0}$ and that $||F((x,y))|| \ge 1$ for all (x,y) with ||(x,y)|| = 1.

Prove that $F(\{(x,y): ||(x,y)|| < 1\}) \supset \{(x,y): ||(x,y)|| < 1\}.$

(Hint: Show, with $U = \{(x,y) : ||(x,y)|| < 1\}$, that $F(U) \cap U$ is both open and closed in U).

8. Let V be a finite dimensional real vector space. Let $W \subset V$ be a subspace and $W^o := \{f: V \to F \text{ linear } | f = 0 \text{ on } W\}$. Prove that

$$\dim(V) = \dim(W) + \dim(W^o).$$

9. Find the matrix representation in the standard basis for either rotation by an angle θ in the plane perpendicular to the subspace spanned by the vectors (1,1,1,1) and (1,1,1,0) in \mathbb{R}^4 .

[You do not have to multiply the matrices out but must compute any inverses.]

10. Let V be a complex inner product space and W a finite dimensional subspace. Let $v \in V$. Prove that there exists a unique vector $v_W \in W$ such that

$$||v - v_W|| \le ||v - w||$$

for all $w \in W$. Deduce that equality holds if and only if $w = v_W$.

11. Let V be a finite dimensional real inner product space and $T, S : V \to V$ two commuting hermitian linear operators. Show that there exists an orthonormal basis for V consisting of vectors that are simultaneously eigenvectors of T and S.