Basic Exam (Fall 2004)

- 1) Consider the following two statements:
- (A) The sequence (a_n) converges.
- (B) The sequence $((a_1 + a_2 + ... + a_n)/n)$ converges. Does (A) imply (B)? Does (B) imply (A)? Prove your answers.
- 2) State and prove Rolle's Theorem. (You can use without proof theorems about the maxima and minima of continuous or differentiable functions.)
- 3) Show that if $f_n \to f$ uniformly on the bounded closed interval [a, b], then

$$\int_a^b f_n(x)dx \to \int_a^b f(x)dx.$$

- 4) Suppose that (\mathcal{M}, ρ) is a metric space, $x, y \in \mathcal{M}$, and that $\{x_n\}$ is a sequence in this metric space such that $x_n \to x$. Prove that $\rho(x_n, y) \to \rho(x, y)$.
- 5) Prove that the space C[0,1] of continuous functions from [0,1] to \mathbb{R} with the supremum norm, $||f||_{\infty} = \sup_{[0,1]} |f(x)|$, is complete. (You can use without proof the fact that a uniform limit of continuous functions is continuous.)
- 6) The Bolzano-Weirstrass Theorem in \mathbb{R}^n states that if S is a bounded closed subset of \mathbb{R}^n and (x_n) is a sequence which takes values in S, then (x_n) has a subsequence which converges to a point in S. Assume this statement known in case n = 1, and use it to prove the statement in case n = 2.
- 7) Observe that the point P = (1, 1, 1) belongs to the set S of points in \mathbb{R}^3 satisfying the equations

$$x^4y^2 + x^2z + yz^2 = 3.$$

Explain carefully how, in this case, the Implicit Function Theorem allows us to conclude that there exists a differentiable function f(x, y) such that (x, y, f(x, y)) lie in S for all (x, y) in a small open set containing (1, 1).

- 8) Let $A = (a_{ij})$ be a real, $n \times n$ symmetric matrix and let $Q(v) = v \cdot Av$ (ordinary dot product) be the associated quadratic form defined for $v = \langle v_1, ..., v_n \rangle \in \mathbf{R}^n$.
 - 1. Show that $\nabla Q_v = 2Av$ where ∇Q_v is the gradient at v of the function Q.
 - 2. Let M the minimum value of Q(v) on on the unit sphere $S^n = \{v \in \mathbf{R}^n : ||\mathbf{v}|| = \mathbf{1}\}$ and let $u \in S^n$ be a vector such that Q(u) = M. Prove, using Lagrange multipliers, that u is an eigenvector of A with eigenvalue M.
- 9) Let $T: \mathbb{C}^n \to \mathbb{C}^n$ be a linear transformation and P(X) a polynomial such that P(T) = 0. Prove that every eigenvalue of T is a root of P(X).
- 10) Let $V = \mathbf{R^n}$ and let $T: V \to V$ be a linear transformation. For $\lambda \in \mathbf{C}$, the subspace

$$V(\lambda) = \{ v \in V : (T - \lambda I)^N v = 0 \text{ for some } N \ge 1 \}$$

is called a generalized eigenspace.

- 1. Prove that there exists a fixed number M such that $V(\lambda) = \ker((T \lambda I)^M)$.
- 2. Prove that if $\lambda \neq \mu$, then $V(\lambda) \cap V(\mu) = \{0\}$. Hint: use the following equation by raising both sides to a high power.

$$\frac{T - \lambda I}{\mu - \lambda} + \frac{T - \mu I}{\lambda - \mu} = I$$