BASIC QUAL WINTER 2006

(February 18, 2006)

Problem 1. Show that for each $\epsilon > 0$ there exists a sequence of intervals (I_n) with the properties

$$\bigcup_{n=1}^{\infty} I_n \supset \mathbb{Q} \quad \text{and} \quad \sum_{n=1}^{\infty} |I_n| < \epsilon.$$

Problem 2. Let $(a_n)_{n\geq 1}$ be a decreasing sequence of positive numbers such that $\sum_{n=1}^{\infty} a_n = \infty$. Under what condition(s) is the function

$$f(x) = \sum_{n=1}^{\infty} (-1)^n a_n x^n$$

well-defined and left-continuous at x = 1? Carefully prove your assertion.

Problem 3. Consider a function $f:[a,b] \to \mathbb{R}$ which is twice continuously differentiable (including the endpoints). Let $a=x_0 < x_1 < \cdots < x_n = b$ be the uniform partition of [a,b], i.e., $x_{i+1}-x_i=(b-a)/n$ for all $0 \le i < n$. Show that there exists M such that for all $n \ge 1$,

$$\left| \frac{1}{n} \left(\frac{1}{2} f(x_0) + f(x_1) + \dots + f(x_{n-1}) + \frac{1}{2} f(x_n) \right) - \int_a^b f(x) dx \right| \le \frac{M}{n^2}.$$

[Recall that the sum is an approximation of the integral in the Trapezoid Rule. It may be instructive to first solve the problem for n=1 and then address the general case.]

Problem 4. Consider a decreasing sequence of continuous functions $f_n \colon [0,1] \to \mathbb{R}$ obeying the uniform bound $|f_n| \leq M$ for some $M \in (0,1)$. Suppose the point-wise limit $f(x) = \lim_{n \to \infty} f_n(x)$ is continuous on [0,1]. Prove that $f_n \to f$ uniformly on [0,1]. [You may use without proof that [0,1] is compact as well as sequentially compact.]

Problem 5. Consider a function f(x,y) which is twice continuously differentiable. Suppose that f has its unique minimum at (x,y)=(0,0). Carefully prove that then at (0,0),

$$\frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} \ge \left(\frac{\partial^2 f}{\partial x \partial y} \right)^2$$

[You may use without proof that the mixed partials are equal for \mathbb{C}^2 functions.]

Problem 6. Let $-\infty < a < b < \infty$. Prove that a continuous function $f: [a, b] \to \mathbb{R}$ attains all values in [f(a), f(b)].

Problem 7. Let V be a complex inner product space and $v, w \in V$. Prove the Cauchy-Schwarz inequality

$$|(v, w)| \le |v||w|.$$

Problem 8. Let $T: V \to W$ be a linear transformation of finite dimensional real inner product spaces. Show that there exists a unique linear transformation $T^t: W \to V$ such that

$$\langle T(v), w \rangle_W = \langle v, T^t(w) \rangle_V$$
 for all $v \in V$ and $w \in W$

where $\langle \ , \ \rangle_X$ is the inner product on X = V or W.

Problem 9. Let $A \in M_3(\mathbb{R})$ be invertible and satisfy $A = A^t$ and $\det A = 1$. Prove that A has one as an eigenvalue.

Problem 10. Let $T \colon V \to V$ be a linear operator on a finite dimensional complex inner product space. Show that there exists an ordered orthonormal basis for V such that the matrix representation A of T in this basis is upper triangular, i.e, $A = (a_{ij})$ with $a_{ij} = 0$ if j < i. [You cannot use canonical form theorems without proof.]