Basic Exam, March 2008

- 1. Let $g \in C([a,b])$, with $a \leq g(x) \leq b$ for all $x \in [a,b]$. Prove the following:
 - (i) g has at least one fixed point p in the interval [a, b].
 - (ii) If there is a value $\gamma < 1$ such that

$$|g(x) - g(y)| \le \gamma |x - y|$$

for all $x, y \in [a, b]$, then the fixed point p is unique, and the iteration

$$x_{n+1} = g(x_n)$$

converges to p for any initial guess $x_0 \in [a, b]$.

2. Let $\{f_n(x)\}$ be a sequence of continuous functions on the unit interval [0,1] such that $f_n(x) \geq 0$ for all n and x and such that for all $x \in [0,1]$

$$\lim_{n\to\infty} f_n(x) = 0.$$

Prove or give a counterexample to the assertion:

$$\lim_{n \to \infty} \int_0^1 f_n(x) dx = 0.$$

3. Assuming that $f \in C^4[a, b]$ is real, derive a formula for the error of approximation E(h) when the second derivative is replaced by the finite-difference formula

$$f''(x) \sim \frac{f(x+h) - 2f(x) + f(x-h)}{h^2},$$

and h is the mesh size. (Assume that $x, x + h, x - h \in (a, b)$).

4. Let X be a compact subset of \mathbb{R}^N and let $\{f_n(x)\}$ be a sequence of continuous real functions on X such that

$$0 \le f_{n+1}(x) \le f_n(x)$$

and

$$\lim f_n(x) = 0$$
 for all $x \in X$.

Prove Dini's Theorem that $f_n(x)$ converges to 0 uniformly on X.

5. (a) Let F(x,y) be a continuous function on the plane such that for every square S having its sides parallel to the axes,

$$\int \int_S F(x,y) dx dy = 0.$$

Prove F(x,y) = 0 for all (x,y).

(b) Assume f(x,y), $\frac{\partial f(x,y)}{\partial x}$, $\frac{\partial f(x,y)}{\partial y}$, $\frac{\partial}{\partial y} \left(\frac{\partial f(x,y)}{\partial x} \right)$ and $\frac{\partial}{\partial x} \left(\frac{\partial f(x,y)}{\partial y} \right)$ are all continuous in the plane. Use part (a) to prove that

$$\frac{\partial}{\partial y} \left(\frac{\partial f(x,y)}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial f(x,y)}{\partial y} \right).$$

Hint: You may assume the double integral in (a) equals the iterated integral $\int (\int F(x,y)dx)dy$ and equals the iterated integral $\int (\int F(x,y)dy)dx$.

- 6. Let Y be a complete *countable* metric space. Prove there is $y \in Y$ such that $\{y\}$ is open.
- 7. Let a(x) be a function on \mathbb{R} such that
 - (i) $a(x) \ge 0$ for all x, and
 - (ii) There exists $M < \infty$ such that for all finite $F \subset \mathbb{R}$,

$$\sum_F a(x) \leq M.$$

Prove $\{x: f(x) > 0\}$ is countable.

- 8. Assume V is an n-dimensional vector space over the rationals \mathbb{Q} , and T is a \mathbb{Q} -linear transformation $T:V\to V$ such that $T^2=T$. Prove that every vector $v\in V$ can be written uniquely as $v=v_1+v_2$ such that $T(v_1)=v_1$ and $T(v_2)=0$.
- 9. Let V be a vector space over \mathbb{R} .
- (a) Prove that if V is odd dimension, and if T is an \mathbb{R} -linear transformation $T:V\to V$ of V, then T has a non-zero eigenvector $v\in V$.
- (b) Show that for every even positive integer n, there is a a vector space V over \mathbb{R} of dimension n, and an \mathbb{R} -linear transformation $T:V\to V$ of V, such that there is no non-zero $v\in V$ satisfying $T(v)=\lambda v$ for some $\lambda\in\mathbb{R}$.

- 10. Suppose A is an $n \times n$ complex matrix such that A has n distinct eigenvalues. Prove that if B is an $n \times n$ complex matrix such that AB = BA, then B is diagonalizable.
- 11. Assume A is an $n \times n$ complex matrix such that for some positive integer m the power $A^m = I_n$, where I_n is the $n \times n$ identity matrix. Prove that A is diagonalizable.
- 12. Let A be an $n \times n$ real symmetric $(a_{i,j} = a_{j,i})$ matrix, and let $S = \{x \in \mathbb{R}^n : \sum x_j^2 = 1\}$ be the unit sphere of \mathbb{R}^n . Let $x \in S$ be such that

$$(Ax, x) = \sup_{S} (Ay, y)$$

where $(z,y) = \sum z_j y_j$ is the usual inner product on \mathbb{R}^n . (By compactness such x exists.)

(a) Prove that $(x,y) = 0 \Longrightarrow (Ax,y) = 0$. Hint: Expand

$$(A(x+\epsilon y), x+\epsilon y).$$

- (b) Use (a) to prove x is an eigenvector for A.
- (c) Use induction to prove \mathbb{R}^n has an orthonormal basis of eigenvectors for A. Note: If you use part (c) to prove part (a) or part (b), then your solution should include a proof of part (c) that does not use part (a) or part (b).