CHAPTER 1 REVIEW QUESTIONS

Complete the following review questions using the techniques outlined in this chapter. Then, see Chapter 8 for answers and explanations.

- Find the sum of the roots of the equation $\sqrt{x-1} + \sqrt{2x-1} = x$. 1.
 - (A) 1
- (B) 2
- (C) 4
- (D) 5
- (E) 6
- Determine the set of positive values of x that satisfy the following inequality: 2.

$$\frac{1}{x} - \frac{1}{x-1} > \frac{1}{x-2}$$

- (A) $(0,1) \cup (\sqrt{2},2)$
- (B) $(0, \frac{1}{2}) \cup (1, 2)$ (C) $(\frac{1}{2}, 1) \cup (\sqrt{2}, 2\sqrt{2})$
- (D) $(0, \sqrt{2}) \cup (\frac{3}{2}, 2)$
- (E) $(1, \sqrt{2}) \cup (2, 2\sqrt{2})$
- Solve for *x*: |x+1| |x| + 2|x-1| = 2x 1

- (A) $x = -\frac{1}{2}$, 1 (B) $x = -\frac{1}{2}$, 2 (C) x = 1, 2 (D) $x = -\frac{1}{2}$, 1, 2 (E) $x \ge 1$
- Let f be a function such that $f(n + 1) = 1 [f(n)]^2$ for all nonnegative integers n. Which of the follow-4. ing correctly expresses f(n + 2) in terms of f(n)?
 - (A) $2[f(n)]^2$

- (B) $2f(n) 2[f(n)]^2$
- (C) $2f(n) + 2[f(n)]^2$

- (D) $2[f(n)]^2 [f(n)]^4$
- (E) $2[f(n)]^2 + [f(n)]^4$
- Let f be a real-valued function whose inverse is given by the equation: 5.

$$f^{-1}(x) = x(1+x^2) + (1-x^2)$$

What's the value of $f(f^{-1}(f(2)))$?

- (A) -2
- (B) -1
- (C) 1
- (D) 2
- (E) 7

6. Let f, g, and h be real-valued functions defined for all positive x such that:

$$(f \circ g)(x) = (g \circ h)(x)$$

If f(x) = x + 1 and $g(x) = \sqrt{x}$, what is h(x)?

- (A) $x^2 1$

- (B) $\sqrt{x-1}$ (C) $\sqrt{x}+2$ (D) $x\sqrt{x}+1$ (E) $1+(\sqrt{x}+2)\sqrt{x}$
- 7. What's the equation of all points in the xy-plane that are equidistant from the points (-1, 4) and (5, -2)?
 - (A) 2x y = 3

(B) x - y = 1

(C) x + y = 3

- (D) $y = x^2 4x + 1$
- (E) $(x-2)^2 + (y-1)^2 = 18$
- Which of the following best describes the graph of the equation $x^2 + y^2 2x + 4y + 5 = 0$ in the 8. xy-plane?
 - (A) circle
- (B) parabola
- (C) ellipse
- (D) line
- (E) point
- Let C be the curve in the xy-plane described by the equation $x^2 + 4y^2 = 16$. If every point (x, y) on C 9. is replaced by the point $(\frac{1}{2}x, y)$, what is the area enclosed by the resulting curve?
 - (A) 8
- (C) 16
- (D) 8π
- (E) 16π
- Every point on the parabola $y = \sqrt{2x-1}$ is equidistant from the *y*-axis and which of the following points?
 - (A) $(\frac{1}{2}, 0)$

- (B) (1,0) (C) $(\frac{3}{2},0)$ (D) (2,0) (E) $(\frac{5}{2},0)$
- One of the foci of the hyperbola $y^2 = \left(\frac{x}{a}\right)^2 + 1$ is the point $(0, \sqrt{2})$. Find a. 11.
 - (A) $\frac{1}{2\sqrt{2}}$ (B) $\frac{1}{\sqrt{2}}$ (C) $\frac{1}{2}$

- (D) 1 (E) $\sqrt{3}$
- Which one of the following polynomials p(x) has the property that $\sqrt{3} \sqrt{2}$ is a root of the equation 12. p(x) = 0?

- (A) $2x^2 + 6x + 3$ (B) $x^3 2x + 6$ (C) $x^4 + 2x^2 3$ (D) $x^4 10x^2 + 1$ (E) $x^4 5x^2 + 6$

13.			-	es a remainder of 1, and der when $p(x)$ is divi	, , ,	divided
	(A) -1	(B) 0	(C) x	(D) -x	(E) 2x	

- 14. Given that p(x) is a real polynomial of degree ≤ 4 such that one can find five distinct solutions to the equation p(x) = 5, what is the value of p(5)?
 - (A) 0 (B) 1 (C) 4 (D) 5 (E) Cannot be determined from the information given
- 15. If the roots of the equation $x^2 + Bx + 1 = 0$ are the squares of the roots of the equation $x^2 + bx + 1 = 0$, which of the following expresses *B* in terms of *b*?
 - (A) $2 b^2$
- (B) $1 b^2$
- (C) $b^2 1$
- (D) b^2
- (E) $b^2 2$
- **16.** Find the largest value of b such that 1 + bi satisfies the equation

$$x^3 - 3x^2 + 6x - 4 = 0$$

given that *every* root of this equation has the form 1 + bi (where b is real).

- (A) 1
- (B) $\sqrt{2}$
- (C) $\sqrt{3}$
- (D) 2
- (E) 3
- 17. If *a* and *x* are positive numbers and $A = a^2$, express the following in its simplest form in terms of *x*: $a^{(\log_a x) + (\log_a x)}$
 - (A) 2x
- (B) x²
- (C) \sqrt{x}
- (D) x³
- (E) $x\sqrt{x}$

18. What are the roots of the following equation?

$$(\log x)^2 = 2\log x$$

- (A) 1, e⁻²
- (B) $1, \sqrt{e}$
- (C) $1, e^2$
- (D) all x > 0
- (E) all real x

19. The hyperbolic sine function, denoted sinh, is defined by the equation:

$$\sinh x = \frac{e^x - e^{-x}}{2}$$

Find a formula for $sinh^{-1}x$.

- (A) $\log(1-\sqrt{x^2+1})$
- (B) $\log(1+\sqrt{x^2+1})$
- (C) $\log(x \sqrt{x^2 + 1})$

- (D) $\log(x \sqrt{x^2 + 1})$
- (E) $\log(\sqrt{x^2+1}-x)$
- 20. The hyperbolic cosine function, denoted cosh, is defined by the equation:

$$\frac{e^x + e^{-x}}{2}$$

If the hyperbolic tangent function, tanh, is defined by

$$\tanh x = \frac{\sinh x}{\cosh x}$$

find a formula for $\tanh^{-1} x$.

- (A) $\frac{1}{2}\log\frac{x-1}{x+1}$ (B) $\log\frac{\frac{1}{2}x-1}{\frac{1}{2}x+1}$ (C) $\log\frac{1+\frac{1}{2}x}{1-\frac{1}{2}x}$ (D) $\frac{1}{2}\log\frac{x+1}{x-1}$ (E) $\frac{1}{2}\log\frac{1+x}{1-x}$
- Let x be the real number such that $\sin(\sin x) = \frac{1}{2}$ and 2 < x < 3. What's the value of $\cos(-\sin x)$?
 - (A) $-\sqrt{1-\left(\frac{\pi}{6}\right)^2}$ (B) $\sqrt{1-\left(\frac{\pi}{3}\right)^2}$ (C) $\sqrt{1-\left(\frac{\pi}{6}\right)^2}$ (D) $-\frac{\sqrt{3}}{2}$

- 22, Which one of the following is in the domain of the function $f(x) = \log(\sin x)$? (You may use the fact that 1111 is just slightly greater than $353.64 \times \pi$.)
 - (A) 11
- (B) 111
- (C) 1111
- (D) 11,111
- (E) None of these

- Simplify $\tan(2\arcsin\frac{1}{2})$.
 - (A) $\frac{2\sqrt{2}}{9}$ (B) $\frac{\sqrt{2}}{3}$
- (C) $\frac{3}{4}$
- (D) $\frac{4\sqrt{2}}{7}$

- 24. Simplify $\sqrt{\csc^2\left(\operatorname{arccot}\frac{\pi}{4}\right)-1}$.
 - (A) -1
- (B) 1
- (C) $\frac{\pi^2}{16}$
- (D) $\frac{\pi}{4}$
- (E) $\frac{\sqrt{\pi}}{2}$
- **25.** Determine the exact value of the sum $\arctan 1 + \arctan 2 + \arctan 3$.
 - (A) $\frac{\pi}{2}$
- (B) π
- (C) $\frac{3\pi}{2}$
- (D) $\frac{\pi}{4} 1$
- (E) $\frac{\pi}{2} 1$