CHAPTER 2 REVIEW QUESTIONS

Complete the following review questions using the techniques outlined in this chapter. Then, see Chapter 8 for answers and explanations.

Consider the sequence (x_n) whose terms are given by the formula 1.

$$x_n = \frac{(\cos n\pi)(\sin^2 n)}{\sqrt[6]{n}}$$

for each integer $n \ge 1$. Given that this sequence converges, what is its limit?

- (A) 0
- (B) 1
- (C) log 2
- (D) $\sqrt[e]{2}$
- (E) √e
- Let (x_n) be the sequence with $x_1 = 2$ and $x_n = \sqrt{5x_{n-1} + 6}$ for every integer $n \ge 2$. Given that this 2. sequence converges, what is its limit?
 - (A) 4
- (B) 6
- (C) 8
- (D) 10
- (E) 16
- Let [x] denote the greatest integer $\leq x$. If n is a positive integer, then 3.

$$\lim_{x \to -n^{-}} (|x| - [x]) - \lim_{x \to n^{-}} (|x| - [x]) = ?$$

- (A) -2
- (B) 0
- (C) 2
- (D) 2n 1
- (E) 2n

Evaluate the following limit: 4

$$\lim_{x\to 0} \frac{\arcsin x - x}{x^3}$$

- (A) 0
- (B) $\frac{1}{6}$
- (C) $\frac{1}{3}$
- (D) $\frac{1}{2}$
- (E) 1

5. The curve whose equation is

$$2x^2 + 3x - 2xy - y = 6$$

has two asymptotes. Identify these lines.

- (C) $x = -\frac{1}{2}$ and y = x
- (A) x = -1 and y = -2(B) x = -2 and y = 1(D) $x = -\frac{1}{2}$ and y = x + 1(E) $x = \frac{1}{2}$ and y = 1 x

6. If the function

$$f(x) = \begin{cases} \frac{x^2 - 6x + 8}{x^3 - 2x^2 + 2x - 4} & \text{if } x \neq 2\\ k & \text{if } x = 2 \end{cases}$$

is continuous everywhere, what is the value of *k*?

- (A) 1
- (B) $\frac{1}{2}$
- (C) $\frac{1}{8}$
- (D) $-\frac{1}{3}$
- (E) -1

7. Evaluate the following limit:

$$\lim_{x \to 0} \left[\frac{1}{x^2} \int_0^x \frac{t + t^2}{1 + \sin t} dt \right]$$

- (A) $\frac{1}{2\pi}$
- (B) $\frac{1}{\pi}$
- (C) $\frac{1}{2}$
- (D) 1
- (E) $\frac{\pi}{2}$

Determine the domain of the following function: 8.

$$f(x) = \arcsin(\log \sqrt{x})$$

- (A) $[0, \frac{1}{e^2}]$ (B) $[\frac{1}{e^2}, 1]$
- (C) $[e, e^2]$
- (D) $\left[\frac{1}{e^2}, e^2\right]$
- (E) $[1, e^2]$

Evaluate the derivative of the following function at x = e: 9.

$$f(x) = \arcsin(\log \sqrt{x})$$

- (A) $\frac{1}{e\sqrt{3}}$
- (B) $\frac{e}{\sqrt{2}}$ (C) $\frac{\pi e}{2}$
- (D) $\sqrt{2e}$
- (E) $\frac{3e}{\sqrt{2}}$
- For what values of *m* and *b* will the following function have a derivative for every *x*? 10.

$$f(x) = \begin{cases} x^2 + x - 3 & \text{if } x \le 1\\ mx + b & \text{if } x > 1 \end{cases}$$

- (A) m = 3, b = -2
- (B) m = -2, b = -3
- (C) m = 1, b = -4

- (D) m = -2, b = 1
- (E) m = 3, b = -4

11. If f(x) is a function that's differentiable everywhere, what is the value of this limit?

$$\lim_{h \to 0} \frac{f(x+3h^2) - f(x-h^2)}{2h^2}$$

(A) 4f'(x)

(B) 2f'(x)

(C) f'(x)

(D) $\frac{1}{2}f'(x)$

- (E) The limit does not exist.
- 12. What is the equation of the tangent line to the curve $y = x^3 3x^2 + 4x$ at the curve's inflection point?

(A) y = 2x - 3

(B) y = x - 1

(C) y = x + 1

(D) y = 3x - 2

(E) x + y = 1

13. What is the slope of the tangent line to the curve $xy(x + y) = x + y^4$ at the point (1, 1)?

(A) 2

(B) 1

(C) 0

(D) -1

(E) −2

14. If $f(x) = 2|x-1| + (x-1)^2$, what is the value of f'(0)?

(A) 4

(B) 2

(C) 0

(D) -2

(E) -4

15. If

$$f(x) = \frac{e^x \arccos x}{\cos x}$$

then the slope of the line tangent to the graph of *f* at its *y*-intercept is

 $(A) -\frac{\pi}{2}$

(B) -1

(C) $\frac{\pi}{2} - 1$

(D) 1

(E) $\frac{\pi}{2} + 1$

16. Let $y = \frac{1}{\sqrt{x^3 + 1}}$. If x increases from 2 to 2.09, which of the following most closely approximates the change in y?

(A) 0.08

(B) 0.04

(C) -0.02

(D) -0.06

(E) -0.09

17. If f(1) = 1 and f'(1) = -1, then the value of $\frac{d}{dx} \left[\frac{f(x^3)}{xf(x^2)} \right]$ at x = 1 is equal to

(A) 1

(B) 0

(C) -1

(D) -2

(E) -3

20.	What is the maximum area of a rectangle inscribed in a semicircle of radius <i>a</i> ?					
	$(A) \frac{\sqrt{2}}{2}a^2$	(B) $\frac{\sqrt{3}}{2}a^2$	$(C)^{-}a^2$	(D) $\frac{\pi}{2\sqrt{2}}a^2$	(E) $a^2\sqrt{2}$	
21.	The following function is defined for all positive <i>x</i> :					
			$f(x) = \int_{x}^{2x} \frac{\sin t}{t} dt$			
	At what value	of x on the interval ($(0, \frac{3\pi}{2})$ does this fu	nction attain a local	maximum?	
	(A) $\frac{\pi}{6}$	(B) $\frac{\pi}{3}$	(C) $\frac{\pi}{2}$	(D) π	(E) $\frac{2\pi}{3}$	
22.	Let $f(x) = x^k e^{-x}$, where k is a positive constant. For $x > 0$, what is the maximum value attained by f ?					
	(A) $\left(\frac{e}{k}\right)^k$	(B) $\sqrt[k]{\frac{e}{k^k}}$	(C) $\frac{(\log k)^k}{k}$	(D) $\left(\frac{e}{\log k}\right)^k$	(E) $\left(\frac{k}{e}\right)^k$	
23.	The radius of a circle is decreasing at a rate of 0.5 cm per second. At what rate, in cm ² /sec, is the circle's area decreasing when the radius is 4 cm?					
	(Α) 4π	(B) 2π	(C) π	(D) $\frac{1}{2}\pi$	(E) $\frac{1}{4}\pi$	
24.	The function f	$f(x) = \int_{e^x}^{e^{2x}} t \log t dt \text{ had}$	ns an absolute minin	num at $x = 0$, and a	local maximum at :	<i>x</i> =
	(A) -log 4	(B) -log 2	(C) log 2	(D) 1	(E) log 4	

If *n* is a positive integer, what is the value of the *n*th derivative of $f(x) = \frac{1}{1-2x}$ at $x = -\frac{1}{2}$?

19. Let f(x) be continuous on a bounded interval, [a, b], where $a \ne b$, such that f(a) = 1 and f(b) = 3, and

(D) n

(C) $\frac{1}{2}n$

f'(x) exists for every x in (a, b). What does the Mean-Value theorem say about f?

(A) There exists a number c in the interval (a, b) such that f'(c) = 0. There exists a number c in the interval (a, b) such that f(c) = 0. There exists a number c in the interval (a, b) such that f'(c) = 2. (D) There exists a number c in the interval (a, b) such that f'(c) = 2(b - a). (E) $\frac{n^n}{n!}$

(A) $\frac{1}{2}(n^n)$

(B) $\frac{1}{2}(n!)$

Evaluate the following integral:

$$\int_{-1}^{0} x^2 (x+1)^3 \, dx$$

- (A) $-\frac{7}{20}$ (B) $-\frac{1}{60}$
- (C) $\frac{2}{15}$
- (D) $\frac{1}{60}$
- (E) $\frac{7}{20}$

- If [x] denotes the greatest integer $\leq x$, then $\int_0^{\frac{7}{2}} [x] dx =$
 - (A) $\frac{5}{2}$
- (C) $\frac{9}{2}$
- (D) $\frac{17}{2}$
- (E) $\frac{37}{2}$

27. If

$$f(x) = \begin{cases} -2(x+1) & \text{if } x \le 0 \\ k(1-x^2) & \text{if } x > 0 \end{cases}$$

then the value of *k* for which $\int_{-1}^{1} f(x) dx = 1$ is

- (A) -1
- (B) 0
- (C) 1
- (D) 2
- (E) 3

- Integrate $\int \frac{x^2 dx}{\sqrt{1-x^2}}$
- (A) $\frac{1}{2} \left(\arcsin x \sqrt{1 x^2} \right) + c$ (B) $\frac{1}{2} \left(\arcsin x + x\sqrt{1 x^2} \right) + c$ (C) $\frac{1}{2} \left(x \arcsin x \sqrt{1 x^2} \right) + c$
- (D) $\frac{1}{2} \left(\arcsin x x\sqrt{1 x^2} \right) + c$ (E) $\frac{1}{2} \left(x \arcsin x + \sqrt{1 x^2} \right) + c$
- What is the area of the region in the first quadrant bounded by the curve y = x arctan x and the 29. line x = 1?
- (B) $\frac{\pi-2}{4}$ (C) $\frac{\pi}{4}$
- (D) $\frac{\pi+2}{4}$
- (E) $\frac{\pi+4}{4}$

30. Simplify the following:

$$\exp \int_3^5 \frac{dx}{x^2 - 3x + 2}$$

[Note: Recall that exp x is a standard, alternate notation for e^x .]

- (A) $\frac{3}{8}$
- (C) $\frac{4}{3}$
- (D) $\frac{3}{2}$

- 31. Calculate the area of the region in the first quadrant bounded by the graphs of y = 8x, $y = x^3$, and y = 8.
 - (A) 12
- (B) 8
- (C) 6
- (D) $\frac{16}{3}$
- (E) 4
- 32. Which of the following expressions gives the area of the region bounded by the two circles pictured below?

- (A) $\int_0^{\frac{\pi}{2}} \frac{1}{2} \left[(\sqrt{3} \sin \theta)^2 (3 \cos \theta)^2 \right] d\theta$
- (B) $\int_0^{\frac{\pi}{6}} \frac{1}{2} (3\cos\theta)^2 d\theta + \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2} (\sqrt{3}\sin\theta)^2 d\theta$
- (C) $\int_0^{\frac{\pi}{6}} \frac{1}{2} (\sqrt{3} \sin \theta)^2 d\theta + \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2} (3 \cos \theta)^2 d\theta$
- (D) $\int_0^{\frac{\pi}{3}} \frac{1}{2} (3\cos\theta)^2 d\theta + \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2} (\sqrt{3}\sin\theta)^2 d\theta$
- (E) $\int_0^{\frac{\pi}{3}} \frac{1}{2} (\sqrt{3} \sin \theta)^2 d\theta + \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2} (3 \cos \theta)^2 d\theta$
- Let a and b be positive numbers. The region in the second quadrant bounded by the graphs of $y = ax^2$ and y = -bx is revolved around the x-axis. Which of the following relationships between a and b would imply that the volume of this solid of revolution is a constant, independent of a and
 - (A) $b^4 = 2a^5$
- (B) $b^3 = 2a^5$
- (C) $b^5 = 2a^3$ (D) $b^4 = 2a^2$ (E) $b^2 = 2a^3$

- The region bounded by the graphs of $y = x^2$ and y = 6 |x| is revolved around the *y*-axis. What is the volume of the generated solid?
 - (A) $\frac{32}{3}\pi$
- (C) 8π
- (D) $\frac{20}{3}\pi$ (E) $\frac{16}{3}\pi$

- Calculate the length of the portion of the hypocycloid $x^{2/3} + y^{2/3} = 1$ in the first quadrant from the point $\left(\frac{1}{8}, \frac{3\sqrt{3}}{8}\right)$, to the point (1, 0).
 - (A) $\frac{9}{8}$
- (B) $\frac{3\sqrt{2}}{4}$
- (C) 1
- (D) $\frac{5\sqrt{2}}{8}$ (E) $\frac{\sqrt{3}}{2}$

What positive value of a satisfies the following equation? 36.

$$\int_{e}^{a^{e}} \frac{dx}{x \int_{a}^{ax} \frac{dy}{y}} = 1$$

- (A) $\frac{1}{e}$
- (B) √*e*
- (C) \sqrt{e}
- (D) e
- (E) e^2

37. Evaluate the following limit:

$$\lim_{x\to 0} (\cos x)^{\cot^2 x}$$

- (A) $\frac{1}{2}$
- (B) $\frac{1}{\sqrt{e}}$
- (C) $\frac{\sqrt{e}}{2}$
- (D) 1
- (E) \sqrt{e}

Let n be a number for which the improper integral

$$\int_{e}^{\infty} \frac{dx}{x(\log x)^n}$$

converges. Determine the value of the integral.

- (A) $\frac{1}{n+1}$

Find the positive value of a that satisfies the equation: 39.

$$\int_{0}^{a} \frac{dx}{\sqrt{a^{2} - x^{2}}} = \int_{0}^{a} \frac{x \, dx}{\sqrt{a^{2} - x^{2}}}$$

- $(A) \ \frac{2\sqrt{2}}{\pi}$
- (B) 1
- (C) $\frac{\pi}{2\sqrt{2}}$ (D) $\sqrt{2}$

Which of the following improper integrals converge? 40.

$$I. \int_{-\infty}^{\infty} \frac{dx}{(x^2+1)^2}$$

II.
$$\int_{1}^{\infty} xe^{-x} dx$$

III.
$$\int_0^2 \frac{dx}{(2-x)^2}$$

(A) I only

- (B) I and II only
- (C) II only

- (D) I and III only
- (E) II and III only
- 41. Which of the following infinite series converge?

I.
$$\sum_{n=1}^{\infty} \frac{\cos^4(\arctan n)}{n\sqrt[4]{n}}$$

II.
$$\sum_{n=2}^{\infty} \frac{1}{n \log n}$$

III.
$$\sum_{n=0}^{\infty} \frac{(n+1)^3}{5(n+2)(n+3)(n+4)}$$

(A) I only

- (B) I and II only
- (C) II only

- (D) I and III only
- (E) II and III only
- Find the smallest value of *b* that makes the following statement true: 42.

If
$$0 \le a < b$$
, then the series $\sum_{n=1}^{\infty} \frac{(n!)^2 a^n}{(2n)!}$ converges.

- (A) 1
- (B) 2 log 2
- (C) 2
- (D) $\sqrt{2}$
- (E) 4

43. Evaluate the following limit:

$$\lim_{n\to\infty}\sum_{k=1}^n \left[\frac{k}{n^2} - \frac{k^2}{n^3}\right]$$

- (A) $\frac{2}{3}$

- (C) $\frac{1}{3}$ (D) $\frac{1}{6}$
- (E) $\frac{1}{12}$

- Which of the following statements are true?
 - I. If $a_n \ge 0$ for every n, then: $\sum_{n=1}^{\infty} a_n$ converges $\Rightarrow \sum_{n=1}^{\infty} \sqrt{a_n}$ converges.
 - II. If $a_n \ge 0$ for every n, then: $\sum_{n=1}^{\infty} na_n$ converges $\Rightarrow \sum_{n=1}^{\infty} a_n$ converges.
 - III. If $a_n \ge 0$ and $a_{n+1} \le a_n$ for every n, then: $\sum_{n=1}^{\infty} a_n^2$ converges $\Rightarrow \sum_{n=1}^{\infty} (-1)^n a_n$ converges.
 - (A) I and II only
- (B) I and III only
- (C) II only

- (D) II and III only
- (E) III only
- If -1 < x < 1, then $\sum_{n=1}^{\infty} nx^{2n} =$
 - (A) $\frac{x^3}{(1-x)^2}$

(B) $\frac{x^2}{(1-x^2)^2}$

(C) $\frac{x}{(1+x^2)^2}$

(D) $\frac{x^3}{(1+x)^2}$

- (E) $\frac{x^2}{(1+x^2)^2}$
- The smallest positive integer x for which the power series $\sum_{n=1}^{\infty} \frac{n!(2n)!}{(3n)!} x^n$ does not converge is 46.
 - (A) 4
- (B) 6
- (C) 7
- (D) 8
- (E) 9
- In the Taylor series expansion (in powers of x) of the function $f(x) = e^{x^2 x}$, what is the coefficient of x^3 ?
 - (A) -7
- (B) $-\frac{3}{2}$
- (C) $-\frac{7}{6}$ (D) $\frac{7}{6}$

- If k_i (i = 0, 1, 2, 3, 4) are constants such that $x^4 = k_0 + k_1(x+1) + k_2(x+1)^2 + k_3(x+1)^3 + k_4(x+1)^4$ is an identity in x, what is the value of k_3 ?
 - (A) -4
- (B) -3
- (C) -2
- (D) 3
- (E) 4