Warm-up Problems

- Compute the homology groups of S^n for all $n \ge 0$.
- (Jan 2006, B9) Use Mayer-Vietoris sequences to compute the singular homology groups of the 2-torus $T = S^1 \times S^1$. (You may use knowledge of the homology groups of the circle S^1 in your calculations.)
- 1. (June 2005, B7) Find a Δ -complex structure on the space X obtained by identifying three distinct points a, b, c in the 2-sphere to a point, and compute the simplicial homology groups of X.
- 2. (Jan 2006, B8) Find a Δ -complex structure on the space X obtained by identifying the boundaries of three copies of the unit disk together (using identity maps), and compute the simplicial homology groups of X.
- 3. (June 2007, B4) Find the Euler characteristic of $X = (\Delta^5)^{(2)}$, the 2-skeleton of the 5-simplex. Show that $H_1(X) = 0$, $H_2(X)$ is free abelian, and compute the rank of $H_2(X)$.
- 4. (June 2008, B7) Let Y be a Δ -complex.
 - (a) Prove that if $H_4(Y) \neq 0$, then Y must have a simplex of dimension 4.
 - (b) Prove that if $H_4(Y) = \mathbb{Z}/7\mathbb{Z}$, then Y also must have a simplex of dimension 5.
- 5. (June 2008, B8) Let X be a hexagon in \mathbb{R}^2 . Define an equivalence relation on X corresponding to labeling the 6 edges in the boundary of X in counterclockwise fashion in order by : counterclockwise a, counterclockwise b, counterclockwise a, counterclockwise b, counterclockwise a, counterclockwise b. Let M be the corresponding quotient space. Computer $H_n(M)$ for all $n \geq 0$.
- 6. (June 2009, B8) Let X be the space obtained by attaching a torus $T = S^1 \times S^1$ to a cylinder $C = S^1 \times I$ via a homeomorphism of the circle $S^1 \times \{(1,0)\}$ of T with the circle $S^1 \times \{0\}$ of C. Compute the homology groups of X.
- 7. (June 2010, B8) Let X be the space obtained from the 2-simplex Δ^2 by identifying all three vertices together. Describe a Δ -complex structure on the space X and compute its homology groups.
- 8. (June 2014, B8) Let X be a path-connected Hausdorff space. The suspension SX of X is the quotient of the space $X \times I$ by the smallest equivalence relation such that $(p,0) \sim (q,0)$ and $(p,1) \sim (q,1)$ for all $p,q \in X$. Prove that the homology groups satisfy $H_i(SX) = H_{i-1}(X)$ for all i > 1.
- 9. (May 2015, B7) Find the (simplicial) homology groups of the space X obtained from the 3-simplex $\Delta^3 = [v_0, v_1, v_2, v_3]$ by gluing the face $[v_0, v_1, v_2]$ to the face $[v_0, v_2, v_3]$ and the face $[v_0, v_1, v_3]$ to the face $[v_1, v_2, v_3]$ (respecting the ordering of the vertices as written (i.e., the first gluing map sends v_1 to v_2 , and so on)).
- 10. (May 2015, B8) Compute the (reduced) singular homology groups of the space $X = S^1 \times (S^1 \vee S^1)$, which can be thought of as two copies of $S^1 \times S^1$ glued together along their copies of $S^1 \times \{x_0\}$. [You may use your knowledge of the homology groups of $T^2 = S^1 \times S^1$ in your calculations.]