Solutions to the Fall 2003 prelim
1A. Show that the differential equation

f'(z)=2f(2),  f0)=1,  f(0)=1

has an unique entire solution in the complex plane.

Solution. Let

[e.9]

f(z) = Z an 2"

n=0
be the Taylor series of f at 0. Then the equation gives

ap=1, a1 =1, ay=0
k(k —1)ax = ag_s.
Hence for k& > 1 we obtain
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We need to show that the convergence radius of the series for f is infinite. Indeed we have
a
lim =2 =0
k—oo agy

which shows that the series
D

Z a2
k=0
has an infinite radius of convergence. Similarly we argue for the “3k 4 17 series.

2A. List eight groups of order 36 and prove that they are not isomorphic.

Solution. Let C), be a cyclic group of order n, let D,.,, be a dihedral group of order 2n, let
S, be the symmetric group on n letters, and let A,, be its alternating subgroup. Consider
the following eight groups of order 36:

CixC? C3xCy CyxC2 CyxCy
CGXS3 S3><53 CQXDQ.Q CgXA4.

The first four are abelian and pairwise nonisomorphic because each pair has either distinct
2-Sylow subgroups or distinct 3-Sylow subgroups. They are not isomorphic to the last four
because the latter are nonabelian.

Of the last four, only Cy x Ds.g has a cyclic 3-Sylow subgroup, only C5 x A4 has a normal
2-Sylow subgroup, and only S5 x S3 has a trivial center. Thus the last four also are pairwise
nonisomorphic.

(Remark: in fact, there are 14 groups of order 36.)
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3A. Let A be a 2 x 2 matrix with complex entries. Prove that the series I + A + A% 4 ...
converges if and only if every eigenvalue of A has absolute value less than 1.

Solution. Conjugating A changes neither the convergence nor the eigenvalues, so we may

assume that A is in Jordan canonical form, i.e., A = (3 2) or A= (8 olt)

In the first case, A" = (66 b(i and Y A" converges if and only if the eigenvalues a and
b have absolute value less than 1, because the entries of the sum are geometric series.

In the second case, write A = al+N, so N?> = 0, and A" = a"[+na™ 'N. If [+ A+ A% ..
converges, then the diagonal entries a” of the terms A™ must converge to 0, so |a| < 1.

Conversely if |a| < 1, then Y a"™ and > na™"! converge by the Ratio Test, so Y A™ converges.

4A. Give an example, with proof, of a nonconstant irreducible polynomial f(x) over Q with
the property that f(z) does not factor into linear factors over the field K = Q[z]/(f(x)).

Solution. The simplest example is f(z) = 2* — 2. Let /2 denote the real cube root of 2.
Then Q(+/2) is an algebraic extension of Q generated by a root of 2° — 2, hence isomorphic
to K = Q[z]/(2® — 2). Since Q(v/2) C R, and x* — 2 has only one real root, 2> — 2 does not
factor completely over K. The same proof works with f(z) = x® — a for any rational a that
is not a cube of a rational number. Other examples are also possible, of course.

5A. Let C' denote the space of continuous functions on [0, 1]. Define

[ @@l
d<f’~">‘/o T 17 (@) — ()] ™

(a) Show that d is a metric on C.
(b) Show that (C,d) is not a complete metric space.

Solution. The function a +— a/(1+4a) =1 —1/(1 + a) is increasing on [0, c0). Hence, for
a=|f—gl,b=|9g—h|, ¢c=|f —h|, we have ¢ < a+ b and

c a+b a b a b
l4c¢c~ " 1+a+b 1+4+a+db 1+a+b - 14a 140
This implies the triangle inequality.

Define
n*z, 0<z<1/n

1z, 1/n<z<1.

The f, form a Cauchy sequence, since

B max{1/m,1/n} ’fm(,if) - fn(x)’
d(fom, fn) = /0 1+ |fo(z) = fu(x)] dx

max{1/m,1/n}
< / ldx
0

= max{1/m,1/n}.
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Suppose that (C,d) is a complete metric space. Then the f, would converge to some
feC. If f(a) # 1/a for some a € (0,1], then by continuity there exists € > 0 such that
|1/x — f(z)| > € for x € (a — €,a]. Then

ARy

for sufficiently large n. But the right hand side is a positive constant independent of n, so
then f, could not converge to f. Thus f(a) = 1/a for all a € (0,1]. This contradicts the
fact that f is continuous on [0, 1].

a

dx

6A. Let A(m,n) be the m x n matrix with entries
a;=j (0<i<m-—1,0<j<n-1),

where 0° = 1 by definition. Regarding the entries of A(m,n) as representing congruence
classes (mod p), determine the rank of A(m,n) over the finite field F, = Z/pZ for all
m,n > 1 and all primes p.

Solution. The upper-left k& x k square minor A(k, k) of A(m,n) is the Vandermonde
matrix, with determinant [],;_;_.(4 — 7). If & < p, this determinant is non-zero (mod p),
which shows that rk A(m,n) > min(m,n,p). Conversely, A(m,n) has at most p distinct
columns (mod p), so rk A(m,n) < p. Since rk A(n,n) < min(m,n), we have rk A(m,n) =
min(m,n, p).

TA. Let D = {2z € C: |z] <1} —{1,—1}. Find an explicit continuous function f: D — R
satisfying all the following conditions:

e f is harmonic on the interior of D (the open unit disk),
e f(z) =1 when |2| =1 and Im(z) > 0, and
e f(z) = —1 when |z| =1 and Im(z) < 0.

Solution. The linear fractional transformation w = (1+z)/(1—z) maps |z| < 1 to the half-
plane Re(w) > 0, with the upper and lower boundary semicircles mapping to the half-lines
iR~ and iRy, respectively. A branch of logw defined on C — R« has

—m/2, w € iR,

Im(logw) = {
so f(z) = 2Im(log((1+ z)/(1 — 2))) is a solution.

8A. Let p be a prime, and let G be the group Z/p*Z x 7Z/pZ. How many automorphisms
does G have?

Solution. An automorphism of G is determined by where it sends the generators (1,0)
and (0,1). We claim that for (a,b), (¢,d) € G, there exists an automorphism mapping (1, 0)
to (a,b) and (0,1) to (c¢,d) if and only if

a € pL/p°Z, c€ pZ/p*Z, and d#0¢€ Z/pZ.
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If v is an automorphism mapping (1,0) to (a,b) and (0, 1) to (¢, d), then (a,b) must not
be killed by p, so a & pZ/p*Z and (c, d) must be killed by p, so ¢ € pZ/p*Z. Moreover (c,d)
should not be a multiple of p(a,b) = (pa,0), so d # 0.

Conversely, given (a,b) and (¢, d) satisfying the conditions, there exists a homomorphism
a : G — G mapping (1,0) to (a,b) and (0, 1) to (¢, d), since (a,b) is killed by p* and (c,d) is
killed by p. The condition on a implies that (a,b) has order p?. If (c,d) were a multiple of
(a,b), then since ¢ € pZ/p*Z, the element (c,d) would be a multiple of p(a, b) = (pa,0), which
is impossible, since d # 0 € Z/pZ. Thus #a(G) > p*. so by Lagrange’s Theorem #a(G) =
p®. Thus « is surjective, but G is finite, so « is also injective, so a is an automorphism.

It remains to count (a, b, c,d) satisfying the conditions. There are p* — p possibilities for
a, p possibilities for b, p possibilities for ¢, and p — 1 possibilities for d, and these may be
chosen independently, so in total there are (p? — p)p?(p — 1) = p° — 2p* + p3 automorphisms
of G.

9A. Let f:[0,1] — [0,1] be an increasing (not strictly increasing) function such that
g _ S Do
f (Z a;3 ) Z 52
7j=1 7j=1
whenever the a; are 0 or 2. Prove that there is a constant Cy such that
|f(x) = f(y)] < Cola —y|los?/(oe?)
for all z,y € [0, 1].

Solution. Let x = 0.ajaq... in base 3. If a; = 1 for some j, choose the smallest such 7,
and define

r_ = O.CLlCLQ N aj_1022222 N
Ty = 0.&1&2 Ce (lj,1200000 e

(These are the nearest numbers in C' on either side of z, where C'is the Cantor set consisting
of numbers in [0, 1] representable by base-3 expansions with only 0’s and 2’s.) Then f(z_) =
f(z4), so f is constant on [x_, x].

Thus it suffices to prove the inequality with z = > a;377 > y = > b;377 with a;,b; €
{0,2}. Let j be the smallest j with a; # b;. Then |z — y| > 377. On the other hand,

- aj — bj . —i o
|f(z) = fly)l = ZTQ J gZQ i—9.975
i i
Combining, we obtain

1f(z) — f(y)] <2277 < 2(377)(0a2)/(083) < 9|5 4|(los2)/(log3),
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1B. Evaluate / dx, where n > 4 is an even integer.

e I+ 1

Solution. Let f(x) be the integrand. The answer is 21, where I := [;* f(z)dz. For
R > 1, let vg be the straight line path from 0 to R, followed by the arc Re® for t € [0, 27 /n],
followed by the straight line path from Re?™/™ back to 0.

Let ¢ = e™/™. The poles of f(z) are at (>™*! for m € 7Z, so the only pole inside 7z is C.
The numerator is nonzero at ¢, while the denominator has nonzero derivative at (, so ( is a
simple pole with residue

Q_Q — 1C3—n_
n¢("! n
By the residue theorem,
2mi 27
(2)dz = ﬂ@*n = _ﬂg?{
n n

TR

On the other hand, the first straight part of the integral tends to I as R — oo, the curved
part of the integral tends to 0 as R — oo since the integrand is O(1/R"?) < O(1/R?) while
the length of the arc is O(R), and the last straight part of the integral tends to —(°I as
R — 00, as the substitution z = (?t shows. Thus

271

I—(7=—-=2"203
n
Now =
, — ¢ —1
sin(37/n) = % 208
S0
4 3
oy _ dmi
n (6-—1
_Ami 1
n  2isin(37/n)
B 2m
~ nsin(37/n)’

2B. Let u,, , be an array of numbers for 1 <m < N and 1 <n < N. Suppose that u,,,, =0
when m is 1 or N, or when n is 1 or N. Suppose also that

1
Umpn = & (umfl,n + Um+1,n + Um,n—1 + um,n+1)

4
whenever 1 <m < N and 1 <n < N. Show that all the w,,, are zero.

Solution. If not, then by changing signs, we may assume that M := maxu,,, is positive.
Let
R={(m,n):umn=M}C{2,3,...,N—1} x{2,3,...,N —1}.
Choose (m,n) € R with m minimal. Since (m —1,n) € R,
1 1
Z (um—l,n + Um+1,n + Ump—1 + um,n-{—l) < ZL(M + M+ M + M) =M = Um,n -
This contradicts the given relation.



3B. Let A and B be n x n complex unitary matrices. Prove that |det(A + B)| < 2".

Solution. Let C' = A~ B, which also is unitary. Then
A+ B=A(I+0C)

Since A is unitary, its eigenvalues have absolute value 1. Multiplying them together shows
that [det A| = 1. If (3, ..., (, are the eigenvalues of C' with multiplicity, so |(;| = 1, then the
eigenvalues of I +C are 1 4+ (y,...,1+ (,, so

ldet(I+C)| =1+G|... |1+ <2-2...2=2"

Thus
|det(A + B)| = |det(A)||det(I + C)| < 2™

4B. Let L be a line in C, and let f be an entire function such that f(C)N L = (). Prove that
f is constant. (Do not use the theorem of Picard that the image of a nonconstant entire
function omits at most one complex number.)

Solution. Replacing f by f + ¢ for some ¢ € C, we may assume that 0 € L. Replacing
f by af for some o € C*, we may assume that L is the imaginary axis. Since f(C) is
connected, it is contained in either the right half plane or the left half plane. Replace f by
— f if necessary, to assume that f(C) is contained in the left half plane. Then g(z) = e/**) is
entire and bounded, hence it is a constant ¢ by Liouville’s theorem. Then f(C) is contained
in the set of solutions to e* = ¢, which is discrete, but f(C) is connected, so f(C) must be
a point. Thus f is constant.

5B. Let n be a positive integer. Let ¢(n) be the Euler phi function, so ¢(n) = #(Z/nZ)*.
Prove that if ged(n, ¢(n)) > 1, then there exists a noncyclic group of order n.

Solution. Let p be a prime dividing both n and ¢(n). The formula for ¢(n) shows that
either p%|n or there is a different prime g|n such that p|(g — 1).

If p?|n, then C, x C, x C,, /p2 is a noncyclic group of order n (where C,, denotes a cyclic
group of order m).

In the other case, let G be the subgroup of GLy(FF,) consisting of matrices of the form

6 1)

where a” = 1. Since [} is cyclic of order g — 1, there are p solutions to a” = 1 in F,. Thus
#G =pq. If a? =1 and a # 1, then

a 0\ (1 1 1 1\ (a O
0 1/\0 1 7 0 1/\0 1
so G is not abelian. Then G x C,,/,, has order n and is not cyclic (since it is not abelian).

/pq

6B. Let f(z) be a meromorphic function on the complex plane. Suppose that for every
polynomial p(z) € C[z] and every closed contour I' avoiding the poles of f, we have

/F p(2)2f(2) dz = 0.

Prove that f(z) is entire.



Solution. Comparing the condition with p(z) replaced by p(z) + 1 and subtracting, we
find that

/F(2p(2) +1)f(2)dz = 0.

Every polynomial can be written as 2p(z) 4+ 1, so we have that

/F p(2)f(2) dz = 0

for every polynomial p(z).
Suppose that f(z) has a pole of order n at a € C. Then (z — a)" ! f(z) has a nonzero
residue at a, so

[G-ard: 20

for a sufficiently small loop I' around a. Thus f(z) cannot have any poles. Hence f(z) is
entire.

7B. (a) Let G be a finite group and let X be the set of pairs of commuting elements of G:
X ={(g9,h) € G x G : gh = hg}.

Prove that |X| = ¢|G| where ¢ is the number of conjugacy classes in G.

(b) Compute the number of pairs of commuting permutations on five letters.

Solution. (a) Let C, denote the conjugacy class of g and Z, the centralizer of g. By the
orbit-stabilizer theorem, we have |Z,| - |C,| = |G| for every g. Hence > _.|Z,| = |G| for
every conjugacy class C, and |X| =3 . [Z,] = c[G|.

(b) Take G = S5, with |G| = 5! = 120. The number of conjugacy classes ¢ is the number
of partitions of 5, namely 7. So there are 7 - 120 = 840 pairs of commuting permutations.

geC

8B. The set of 5 x 5 complex matrices A satisfying A*> = A? is a union of conjugacy classes.
How many conjugacy classes?

Solution. A matrix A is a solution to #* = z? (or equivalently, 2?(x — 1) = 0) if and only
if all its Jordan blocks are. In particular, each Jordan block must have eigenvalues 0 and 1,
and the possible Jordan blocks are

O 0. () o)

The conjugacy type of a matrix is determined by the multiplicities of the Jordan blocks. Let
a, b, ¢ be the multiplicities of the blocks above, respectively. Then the answer is the number
of nonnegative integer solutions to

a+b+2c=5.
For fixed ¢ € {0, 1,2}, there are 6 — 2¢ solutions to a + b =5 — 2¢. Thus the answer is
(6-2-0)+(6—2-1)+(6—2-2) =12.
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9B. Let A\,a € R, with a > 0. Let u(x,y) be an infinitely differentiable function defined on
an open neighborhood of 2% + 3% < 1 such that

Au+  u =0 inz?+y? <1
Uy = —QU on x° +1y* = 1.

Here A is the Laplacian 9%/0x? + 0*/9y?, and u,, denotes the directional derivative of u in
the direction of the outward unit normal (pointing away from the origin). Prove that if u is
not identically zero in 22 + y* < 1, then A > 0.

Solution. Let D be the closed unit disk. Then

/Du(Au+)\u):/D0:0.

ulu =YV - (u¥u) — [Vul*,

/Z~(u2u)—/ |Zu!2+/)\u2:0.
D D D

Applying the Divergence Theorem (in the form

/l;v f 8Df

where n is the outward unit normal) to the first term, we get

/ Uy, — /|Vu|2 / u? = 0.
oD

Since u, = —au on 0D, we get

—a/ uz—/\ZuF—i—)\/uQ:O.
oD D D

Since w is not identically zero on D, we have [, u? > 0. If u were constant on D, the equation
u, = —au on 9D would force u = 0. Thus Vu is not identically zero on D, so [, [Vu|* > 0.
Finally, a [, u* > 0. Thus solving for A shows that A > 0.

If we substitute

this becomes



