
Solutions to the Fall 2003 prelim

1A. Show that the differential equation

f ′′(z) = zf(z), f(0) = 1, f ′(0) = 1

has an unique entire solution in the complex plane.

Solution. Let

f(z) =
∞∑

n=0

anz
n

be the Taylor series of f at 0. Then the equation gives

a0 = 1, a1 = 1, a2 = 0

k(k − 1)ak = ak−3.

Hence for k ≥ 1 we obtain

a3k =
k∏

j=1

1

3j(3j − 1)

a3k+1 =
k∏

j=1

1

3j(3j + 1)

a3k+2 = 0.

We need to show that the convergence radius of the series for f is infinite. Indeed we have

lim
k→∞

a3k+3

a3k

= 0

which shows that the series
∞∑

k=0

a3kz
3k

has an infinite radius of convergence. Similarly we argue for the “3k + 1” series.

2A. List eight groups of order 36 and prove that they are not isomorphic.

Solution. Let Cn be a cyclic group of order n, let D2·n be a dihedral group of order 2n, let
Sn be the symmetric group on n letters, and let An be its alternating subgroup. Consider
the following eight groups of order 36:

C2
2 × C2

3 C2
2 × C9 C4 × C2

3 C4 × C9

C6 × S3 S3 × S3 C2 ×D2·9 C3 × A4.

The first four are abelian and pairwise nonisomorphic because each pair has either distinct
2-Sylow subgroups or distinct 3-Sylow subgroups. They are not isomorphic to the last four
because the latter are nonabelian.

Of the last four, only C2×D2·9 has a cyclic 3-Sylow subgroup, only C3×A4 has a normal
2-Sylow subgroup, and only S3×S3 has a trivial center. Thus the last four also are pairwise
nonisomorphic.

(Remark: in fact, there are 14 groups of order 36.)
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3A. Let A be a 2 × 2 matrix with complex entries. Prove that the series I + A + A2 + . . .
converges if and only if every eigenvalue of A has absolute value less than 1.

Solution. Conjugating A changes neither the convergence nor the eigenvalues, so we may

assume that A is in Jordan canonical form, i.e., A =

(
a 0
0 b

)
or A =

(
a 1
0 a

)
.

In the first case, An =

(
an 0
0 bn

)
and

∑
An converges if and only if the eigenvalues a and

b have absolute value less than 1, because the entries of the sum are geometric series.
In the second case, write A = aI+N , so N2 = 0, and An = anI+nan−1N . If I+A+A2+. . .

converges, then the diagonal entries an of the terms An must converge to 0, so |a| < 1.
Conversely if |a| < 1, then

∑
an and

∑
nan−1 converge by the Ratio Test, so

∑
An converges.

4A. Give an example, with proof, of a nonconstant irreducible polynomial f(x) over Q with
the property that f(x) does not factor into linear factors over the field K = Q[x]/(f(x)).

Solution. The simplest example is f(x) = x3 − 2. Let 3
√

2 denote the real cube root of 2.
Then Q( 3

√
2) is an algebraic extension of Q generated by a root of x3 − 2, hence isomorphic

to K = Q[x]/(x3 − 2). Since Q( 3
√

2) ⊆ R, and x3 − 2 has only one real root, x3 − 2 does not
factor completely over K. The same proof works with f(x) = x3 − a for any rational a that
is not a cube of a rational number. Other examples are also possible, of course.

5A. Let C denote the space of continuous functions on [0, 1]. Define

d(f, g) =

∫ 1

0

|f(x)− g(x)|
1 + |f(x)− g(x)|

dx.

(a) Show that d is a metric on C.
(b) Show that (C, d) is not a complete metric space.

Solution. The function a 7→ a/(1 + a) = 1− 1/(1 + a) is increasing on [0,∞). Hence, for
a = |f − g|, b = |g − h|, c = |f − h|, we have c ≤ a + b and

c

1 + c
≤ a + b

1 + a + b
=

a

1 + a + b
+

b

1 + a + b
≤ a

1 + a
+

b

1 + b
.

This implies the triangle inequality.
Define

fn(x) =

{
n2x, 0 ≤ x ≤ 1/n

1/x, 1/n ≤ x ≤ 1.

The fn form a Cauchy sequence, since

d(fm, fn) =

∫ max{1/m,1/n}

0

|fm(x)− fn(x)|
1 + |fm(x)− fn(x)|

dx

≤
∫ max{1/m,1/n}

0

1 dx

= max{1/m, 1/n}.
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Suppose that (C, d) is a complete metric space. Then the fn would converge to some
f ∈ C. If f(a) 6= 1/a for some a ∈ (0, 1], then by continuity there exists ε > 0 such that
|1/x− f(x)| ≥ ε for x ∈ (a− ε, a]. Then

d(fn, f) ≥
∫ a

a−ε

ε

1 + ε
dx

for sufficiently large n. But the right hand side is a positive constant independent of n, so
then fn could not converge to f . Thus f(a) = 1/a for all a ∈ (0, 1]. This contradicts the
fact that f is continuous on [0, 1].

6A. Let A(m, n) be the m× n matrix with entries

aij = ji (0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1),

where 00 = 1 by definition. Regarding the entries of A(m, n) as representing congruence
classes (mod p), determine the rank of A(m, n) over the finite field Fp = Z/pZ for all
m, n ≥ 1 and all primes p.

Solution. The upper-left k × k square minor A(k, k) of A(m,n) is the Vandermonde
matrix, with determinant

∏
0≤i<j<k(j − i). If k ≤ p, this determinant is non-zero (mod p),

which shows that rk A(m, n) ≥ min(m, n, p). Conversely, A(m, n) has at most p distinct
columns (mod p), so rk A(m, n) ≤ p. Since rk A(n, n) ≤ min(m, n), we have rk A(m, n) =
min(m,n, p).

7A. Let D = {z ∈ C : |z| ≤ 1} − {1,−1}. Find an explicit continuous function f : D → R
satisfying all the following conditions:

• f is harmonic on the interior of D (the open unit disk),
• f(z) = 1 when |z| = 1 and Im(z) > 0, and
• f(z) = −1 when |z| = 1 and Im(z) < 0.

Solution. The linear fractional transformation w = (1+z)/(1−z) maps |z| < 1 to the half-
plane Re(w) > 0, with the upper and lower boundary semicircles mapping to the half-lines
iR>0 and iR<0, respectively. A branch of log w defined on C− R≤0 has

Im(log w) =

{
π/2, w ∈ iR>0

−π/2, w ∈ iR<0,

so f(z) = 2
π
Im(log((1 + z)/(1− z))) is a solution.

8A. Let p be a prime, and let G be the group Z/p2Z × Z/pZ. How many automorphisms
does G have?

Solution. An automorphism of G is determined by where it sends the generators (1, 0)
and (0, 1). We claim that for (a, b), (c, d) ∈ G, there exists an automorphism mapping (1, 0)
to (a, b) and (0, 1) to (c, d) if and only if

a 6∈ pZ/p2Z, c ∈ pZ/p2Z, and d 6= 0 ∈ Z/pZ.
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If α is an automorphism mapping (1, 0) to (a, b) and (0, 1) to (c, d), then (a, b) must not
be killed by p, so a 6∈ pZ/p2Z and (c, d) must be killed by p, so c ∈ pZ/p2Z. Moreover (c, d)
should not be a multiple of p(a, b) = (pa, 0), so d 6= 0.

Conversely, given (a, b) and (c, d) satisfying the conditions, there exists a homomorphism
α : G → G mapping (1, 0) to (a, b) and (0, 1) to (c, d), since (a, b) is killed by p2 and (c, d) is
killed by p. The condition on a implies that (a, b) has order p2. If (c, d) were a multiple of
(a, b), then since c ∈ pZ/p2Z, the element (c, d) would be a multiple of p(a, b) = (pa, 0), which
is impossible, since d 6= 0 ∈ Z/pZ. Thus #α(G) > p2. so by Lagrange’s Theorem #α(G) =
p3. Thus α is surjective, but G is finite, so α is also injective, so α is an automorphism.

It remains to count (a, b, c, d) satisfying the conditions. There are p2 − p possibilities for
a, p possibilities for b, p possibilities for c, and p − 1 possibilities for d, and these may be
chosen independently, so in total there are (p2 − p)p2(p− 1) = p5 − 2p4 + p3 automorphisms
of G.

9A. Let f : [0, 1] → [0, 1] be an increasing (not strictly increasing) function such that

f

(
∞∑

j=1

aj3
−j

)
=

∞∑
j=1

aj

2
2−j

whenever the aj are 0 or 2. Prove that there is a constant C0 such that

|f(x)− f(y)| ≤ C0|x− y|(log 2)/(log 3)

for all x, y ∈ [0, 1].

Solution. Let x = 0.a1a2 . . . in base 3. If aj = 1 for some j, choose the smallest such j,
and define

x− = 0.a1a2 . . . aj−1022222 . . .

x+ = 0.a1a2 . . . aj−1200000 . . . .

(These are the nearest numbers in C on either side of x, where C is the Cantor set consisting
of numbers in [0, 1] representable by base-3 expansions with only 0’s and 2’s.) Then f(x−) =
f(x+), so f is constant on [x−, x+].

Thus it suffices to prove the inequality with x =
∑

aj3
−j ≥ y =

∑
bj3

−j with aj, bj ∈
{0, 2}. Let ĵ be the smallest j with aj 6= bj. Then |x− y| ≥ 3−ĵ. On the other hand,

|f(x)− f(y)| =

∣∣∣∣∣∣
∑
j≥ĵ

aj − bj

2
2−j

∣∣∣∣∣∣ ≤
∑
j≥ĵ

2−j = 2 · 2−ĵ.

Combining, we obtain

|f(x)− f(y)| ≤ 2 · 2−ĵ ≤ 2(3−ĵ)(log 2)/(log 3) ≤ 2|x− y|(log 2)/(log 3).
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1B. Evaluate

∫ ∞

−∞

x2

xn + 1
dx, where n ≥ 4 is an even integer.

Solution. Let f(x) be the integrand. The answer is 2I, where I :=
∫∞

0
f(x) dx. For

R > 1, let γR be the straight line path from 0 to R, followed by the arc Reit for t ∈ [0, 2π/n],
followed by the straight line path from Re2πi/n back to 0.

Let ζ = eπi/n. The poles of f(z) are at ζ2m+1 for m ∈ Z, so the only pole inside γR is ζ.
The numerator is nonzero at ζ, while the denominator has nonzero derivative at ζ, so ζ is a
simple pole with residue

ζ2

nζn−1
=

1

n
ζ3−n.

By the residue theorem, ∫
γR

f(z) dz =
2πi

n
ζ3−n = −2πi

n
ζ3.

On the other hand, the first straight part of the integral tends to I as R →∞, the curved
part of the integral tends to 0 as R →∞ since the integrand is O(1/Rn−2) ≤ O(1/R2) while
the length of the arc is O(R), and the last straight part of the integral tends to −ζ6I as
R →∞, as the substitution z = ζ2t shows. Thus

I − ζ6I = −2πi

n
ζ3.

Now

sin(3π/n) =
ζ3 − ζ−3

2i
=

ζ6 − 1

2iζ3
,

so

2I =
4πi

n
· ζ3

ζ6 − 1

=
4πi

n
· 1

2i sin(3π/n)

=
2π

n sin(3π/n)
.

2B. Let um,n be an array of numbers for 1 ≤ m ≤ N and 1 ≤ n ≤ N . Suppose that um,n = 0
when m is 1 or N , or when n is 1 or N . Suppose also that

um,n =
1

4
(um−1,n + um+1,n + um,n−1 + um,n+1)

whenever 1 < m < N and 1 < n < N . Show that all the um,n are zero.

Solution. If not, then by changing signs, we may assume that M := max um,n is positive.
Let

R = {(m, n) : um,n = M} ⊆ {2, 3, . . . , N − 1} × {2, 3, . . . , N − 1}.
Choose (m, n) ∈ R with m minimal. Since (m− 1, n) 6∈ R,

1

4
(um−1,n + um+1,n + um,n−1 + um,n+1) <

1

4
(M + M + M + M) = M = um,n.

This contradicts the given relation.
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3B. Let A and B be n× n complex unitary matrices. Prove that | det(A + B)| ≤ 2n.

Solution. Let C = A−1B, which also is unitary. Then

A + B = A(I + C)

Since A is unitary, its eigenvalues have absolute value 1. Multiplying them together shows
that | det A| = 1. If ζ1, . . . , ζn are the eigenvalues of C with multiplicity, so |ζi| = 1, then the
eigenvalues of I + C are 1 + ζ1, . . . , 1 + ζn, so

| det(I + C)| = |1 + ζ1| . . . |1 + ζn| ≤ 2 · 2 . . . 2 = 2n

Thus
| det(A + B)| = | det(A)|| det(I + C)| ≤ 2n.

4B. Let L be a line in C, and let f be an entire function such that f(C)∩L = ∅. Prove that
f is constant. (Do not use the theorem of Picard that the image of a nonconstant entire
function omits at most one complex number.)

Solution. Replacing f by f + c for some c ∈ C, we may assume that 0 ∈ L. Replacing
f by αf for some α ∈ C∗, we may assume that L is the imaginary axis. Since f(C) is
connected, it is contained in either the right half plane or the left half plane. Replace f by
−f if necessary, to assume that f(C) is contained in the left half plane. Then g(z) = ef(z) is
entire and bounded, hence it is a constant c by Liouville’s theorem. Then f(C) is contained
in the set of solutions to ez = c, which is discrete, but f(C) is connected, so f(C) must be
a point. Thus f is constant.

5B. Let n be a positive integer. Let φ(n) be the Euler phi function, so φ(n) = #(Z/nZ)∗.
Prove that if gcd(n, φ(n)) > 1, then there exists a noncyclic group of order n.

Solution. Let p be a prime dividing both n and φ(n). The formula for φ(n) shows that
either p2|n or there is a different prime q|n such that p|(q − 1).

If p2|n, then Cp × Cp × Cn/p2 is a noncyclic group of order n (where Cm denotes a cyclic
group of order m).

In the other case, let G be the subgroup of GL2(Fq) consisting of matrices of the form(
a b
0 1

)
where ap = 1. Since F∗q is cyclic of order q − 1, there are p solutions to ap = 1 in Fq. Thus
#G = pq. If ap = 1 and a 6= 1, then(

a 0
0 1

)(
1 1
0 1

)
6=
(

1 1
0 1

)(
a 0
0 1

)
so G is not abelian. Then G× Cn/pq has order n and is not cyclic (since it is not abelian).

6B. Let f(z) be a meromorphic function on the complex plane. Suppose that for every
polynomial p(z) ∈ C[z] and every closed contour Γ avoiding the poles of f , we have∫

Γ

p(z)2f(z) dz = 0.

Prove that f(z) is entire.
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Solution. Comparing the condition with p(z) replaced by p(z) + 1 and subtracting, we
find that ∫

Γ

(2p(z) + 1)f(z) dz = 0.

Every polynomial can be written as 2p(z) + 1, so we have that∫
Γ

p(z)f(z) dz = 0

for every polynomial p(z).
Suppose that f(z) has a pole of order n at a ∈ C. Then (z − a)n−1f(z) has a nonzero

residue at a, so ∫
Γ

(z − a)n−1f(z) dz 6= 0

for a sufficiently small loop Γ around a. Thus f(z) cannot have any poles. Hence f(z) is
entire.

7B. (a) Let G be a finite group and let X be the set of pairs of commuting elements of G:

X = {(g, h) ∈ G×G : gh = hg}.

Prove that |X| = c|G| where c is the number of conjugacy classes in G.

(b) Compute the number of pairs of commuting permutations on five letters.

Solution. (a) Let Cg denote the conjugacy class of g and Zg the centralizer of g. By the
orbit-stabilizer theorem, we have |Zg| · |Cg| = |G| for every g. Hence

∑
g∈C |Zg| = |G| for

every conjugacy class C, and |X| =
∑

g∈G |Zg| = c|G|.
(b) Take G = S5, with |G| = 5! = 120. The number of conjugacy classes c is the number

of partitions of 5, namely 7. So there are 7 · 120 = 840 pairs of commuting permutations.

8B. The set of 5× 5 complex matrices A satisfying A3 = A2 is a union of conjugacy classes.
How many conjugacy classes?

Solution. A matrix A is a solution to x3 = x2 (or equivalently, x2(x− 1) = 0) if and only
if all its Jordan blocks are. In particular, each Jordan block must have eigenvalues 0 and 1,
and the possible Jordan blocks are(

0
)
,
(
1
)
,

(
0 1
0 0

)
.

The conjugacy type of a matrix is determined by the multiplicities of the Jordan blocks. Let
a, b, c be the multiplicities of the blocks above, respectively. Then the answer is the number
of nonnegative integer solutions to

a + b + 2c = 5.

For fixed c ∈ {0, 1, 2}, there are 6− 2c solutions to a + b = 5− 2c. Thus the answer is

(6− 2 · 0) + (6− 2 · 1) + (6− 2 · 2) = 12.
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9B. Let λ, a ∈ R, with a > 0. Let u(x, y) be an infinitely differentiable function defined on
an open neighborhood of x2 + y2 ≤ 1 such that

∆u + λu = 0 in x2 + y2 < 1

un = −au on x2 + y2 = 1.

Here ∆ is the Laplacian ∂2/∂x2 + ∂2/∂y2, and un denotes the directional derivative of u in
the direction of the outward unit normal (pointing away from the origin). Prove that if u is
not identically zero in x2 + y2 < 1, then λ > 0.

Solution. Let D be the closed unit disk. Then∫
D

u(∆u + λu) =

∫
D

0 = 0.

If we substitute
u ∆u = ∇ · (u∇u)− |∇u|2,

this becomes ∫
D

∇ · (u∇u)−
∫

D

|∇u|2 +

∫
D

λu2 = 0.

Applying the Divergence Theorem (in the form∫
D

∇ · f =

∫
∂D

f · n

where n is the outward unit normal) to the first term, we get∫
∂D

uun −
∫

D

|∇u|2 +

∫
D

λu2 = 0.

Since un = −au on ∂D, we get

−a

∫
∂D

u2 −
∫

D

|∇u|2 + λ

∫
D

u2 = 0.

Since u is not identically zero on D, we have
∫

D
u2 > 0. If u were constant on D, the equation

un = −au on ∂D would force u = 0. Thus ∇u is not identically zero on D, so
∫

D
|∇u|2 > 0.

Finally, a
∫

∂D
u2 ≥ 0. Thus solving for λ shows that λ > 0.
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