FALL 2004 PRELIMINARY EXAMINATION SOLUTIONS

1A. Show that there is a unique piecewise continuous function y(z) on R satisfying the two
conditions

y(x) = / e y(x — s)ds for > 0, and
0
y(r) = €°, for z <0,
and find an explicit formula for y(x) for x > 0.

Solution: Suppose that y(x) is a solution. For = > 0, the substitution s = x — ¢ yields

y(z) = / " ey (1) di

1) Hyle) = [yt

The right hand side is continuous as a function of z, so e**y(z) is continuous on R, and
multiplying by e~2* shows that y(x) is continuous on R+,. This in turn implies that the right
hand side is differentiable, and the same argument now shows that y(x) is differentiable on
R<. Differentiating both sides for = > 0 yields

(Y +2y) = ey

y+2y=y
Yy =—y
y=-ce "

for some ¢ € R. Substituting this back into (1) yields, for z > 0,

0 x
ce” :/ et dt +/ ce' dt
—00 0

1
T _ T _1q
ce 3+c(e )
1
c=<
3
1
y(x)zge_x-

e ifx>0
z ifxz<0

Because (1) is equivalent to the integral equation in the original problem, this function indeed

satisfies the conditions of the problem.
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2A. For ¢ € Q, define R, := Q[z]/(2® — cx). Let a,b € Q. Show that the rings R, and R,
are isomorphic if and only if there exists a nonzero r € Q such that b = r2a.

Solution: If r # 0 and b = r?a, then the ring automorphism Q[z] — Qlx] sending x to rx
maps 2% — bx to r3z3 —brx = r3(2® — ax), so it induces an isomorphism between the quotient
rings

Q= . Q@ Q]
(3 —bx) — (r3(23 —az)) (23 — ax)

Conversely, suppose R, ~ R;. The maximal ideals of R, correspond bijectively to maximal
ideals of Q[x] containing z® — az, which in turn correspond bijectively to distinct irreducible
factors of 23 — ax. Thus R, has 1, 3, or 2 maximal ideals according as a = 0, a is a nonzero
square, or a is not a square. Since R, must have the same number of maximal ideals, we
immediately deduce that b = r2a for some r, except possibly in the case where neither a nor
b is a square. We now assume we are in this remaining case. The quotient fields of R, (the
quotients of R, by its two maximal ideals) are Q and Q[z]/(z* — a) ~ Q[y/a]. These must
be the same as the quotient fields Q and @[\/5] of Ry, in some order. Since b is a square in

Q[v/b] but not in Q, it must be a square in Q[/a]. Write
(rv/a +s)* = b.

Ry =

=R,.

Expanding, we get 2rs = 0. If r = 0, we contradict the assumption that b is not a square.
Thus s = 0, and b = r2a.

3A. Let f and g be functions that are holomorphic on all of C, except that g has an essential
singularity at the complex number c. Prove that either f is constant, or the composition fog
has an essential singularity at ¢. (Hint: you may assume the Casorati-Weierstrass Theorem,
which states that if a function f has an essential singularity at ¢, then for any punctured
neighborhood N of ¢ on which f is holomorphic, the image f(NN) is dense in C.)

Solution: Suppose that f is not constant. Choose a,b € C such that f(a) # f(b). If N
is any punctured neighborhood of ¢, then g(N) is dense in C, by the Casorati-Weierstrass
Theorem. In particular, the closure of g(N) contains a and b, so the closure of f(g(N))
contains f(a) and f(b). Since this holds for every N, the limit lim, .. f(g(2)) is not oo, and
does not exist as a complex number either. Thus f o g has neither a pole nor a removable
singularity at ¢, so it has an essential singularity at c.

4A. Let A be an n x n matrix with complex entries. Prove that A is diagonalizable if and
only if the following is true: Whenever f is a polynomial with complex coefficients such that
f(A) is nilpotent, we have f(A) = 0. (A matrix A is nilpotent if A™ = 0 for some m > 1.)

Solution: First suppose that A is diagonalizable. If C' is an invertible n x n matrix, then
f(CAC™Y) = Cf(A)C™1, so both sides of the “if and only if” are unchanged by conjugation.
Thus we may assume A is diagonal. Then f(A) is diagonal for any f. Hence if f(A) is
nilpotent, then f(A) = 0.

Now suppose, conversely, that A is such that f(A) = 0 whenever f(A) is nilpotent. Let

f(z) be the product of (x — A) where A runs through the distinct eigenvalues of A. Then
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the characteristic polynomial ¢(x) of A divides some power of f(x), but ¢(A) = 0 (Cayley-
Hamilton Theorem), so some power of f(A)is 0. By hypothesis, f(A) = 0. Thus the minimal
polynomial of A has distinct zeros, so A is diagonalizable.

5A. Let (ay,)m>1 be a sequence of real numbers satisfying a,m < a, + a,,. Prove that

as an element of [—00, 00).

Solution: If n = ¢m +r for integers m, ¢ > 1 and r € [0,m), then a,, = apmir < apm+a, <
la,, + a,, and dividing by n yields
an _fma, a
— < ——+ —.
n nm n
After sending n — oo (for fixed m, so £ and r vary with n), we obtain
. Qp, Am
limsup — < —.
n m
This holds for each m, so
. G, .o Om
limsup — < inf —.
n m
On the other hand,
.. pOp . Qm
liminf — > inf —
n m
holds by definition. Thus
. Gp . Om
lim — = inf —.
n m
6A. Let n be a square-free positive integer (i.e., n = 1 or n is prime or n is a product of
distinct primes). Assume that for every product of primes pq - - - ¢, dividing n, with r > 0,
we have ¢; -+ ¢- 21 (mod p). Prove that every group G of order n is abelian.

Solution: Suppose p|n and let P be a Sylow p-subgroup of G. Let N be the normalizer
of P. By Sylow’s theorems, the number of Sylow p-subgroups is [G : N] = 1 (mod p).
Since N contains P, we have [G : N| = ¢ - - - q., where pq; - - - ¢;|n. Our hypothesis implies
that r = 0, hence N = G, so P is normal. Now let n = p;---p, and let Py, ..., P, be the
corresponding normal Sylow subgroups. Let ); C G be the product of the P;’s, omitting F;.
Then @); is normal and G/Q; is cyclic of order p;. Thus we have a surjective homomorphism
¢i: G — Z/p;Z for each i, and combining these, we get a homomorphism ¢: G — [[, Z/p;Z.
Let K = ker(¢). Since each ¢; factors through G/K, every p; divides |G/K|. This implies
K = 0. Then ¢ is an injective homomorphism between two groups of equal order, hence an
isomorphism.

7A. Let D be the open unit disk in C, and f: D — D a holomorphic function. Suppose that
f(—=3) =0and f(0) = 1. Prove that there is only one possible value for f(3), and find it.

Solution: We first solve for a linear fractional transformation g of D mapping

o5 =0, g0 =5



and find that the function

z+3 2241
+ 5 2 +z
satisfies these conditions. Then the composition h = f o g~ ! satisfies
1 1
h: D — D, h(0) =0, h(ﬁ) =3

By Schwarz’s lemma we must have |h(z)| < |z| in D. But equality holds for z = , so h(z)
must equal z. Hence f = g, and

8A. Let (, ) be a positive-definite Hermitian inner product on a finite-dimensional complex
vector space V. Suppose T: V — V is a C-linear map such that (Tv,v) =0 for all v € V.
Prove that T' = 0.

Solution: For x,y € V, expanding

(T(x+y),(x+y) - (Tz,z) = (Ty,y) =0
yields
(Tx,y) + (Ty,z) = 0.
Substituting iz for x yields
i(Tx,y) —i(Ty,z) = 0.
The previous two equalities imply (Tx,y) = 0 for all z,y € V. Taking y = Tx, we get

(T'x,Tx) = 0. Since ( , ) is positive-definite, we get Tx = 0. This holds for all x € V, so
T =0.

Remark: this proof works even when V' is infinite-dimensional.

9A. Let f: [0,1] — R be a continuous function. Show that

1
lim Flx)e™ dx = 0.

n—oo 0

Solution: We can approximate f uniformly by smooth functions in [0, 1], so it suffices to
prove the statement when f is smooth.
Choose M such that |f(z)| < M for all x € [0,1]. Let € > 0. Then

/06 flx)e™ da

On the remaining interval we integrate by parts:

1 1
/f(x)eimgdx = /f(f)xQem‘Ude
1

<eM

xz
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Letting n tend to infinity, we obtain

1 -
lim [ f(z)e™ dz =0

n—oo
€

Adding to this the bound on [0, €], we get

lim sup <eM

n—oo

/1 Flz)e™ d
0

The conclusion follows if we let € tend to 0.

1B. Let S,, be the group of permutations of {1,...,n}, and let A,, be the alternating sub-
group. Suppose m < n.

(a) Identify S,, with the subgroup of S, consisting of elements that fix m + 1, ..., n.
Prove that A, NS, = A,,.

(b) Is it true in general that if f: S,, — S, is an injective homomorphism, then
A, N f(Sm) = f(An)? Give a proof or a counterexample.

Solution: (a) By definition A, is the kernel of the unique homomorphism sgn,, : S,, — {£1}
mapping each transposition to —1. Restricting sgn,, to .S, gives a homomorphism mapping
each tranposition in S,, to —1, so this restriction must equal sgn,,. Thus A,, = ker(sgn,,,) =
ker(sgn,) N Sy = An N S,

(b) It is false. Take m > 2 and n = 2m. There is an obvious action of S,, x S,
on {1,...,2m} in which the first S,, permutes {1,...,m} and the second S,, permutes
{n+1,...,2m}. Thus we get an injective homomorphism ¢: S,, X S,, — Sgp,. Define
f:Sm — Som by f(o) = t(0,0). Then f maps each transposition in .S, to an element of
Ay, and the transpositions generate Sy, so f(S,,) C As,. Hence Asy N f(Sm) = f(Sm),
and this is strictly larger than f(A,,), since f is injective.

2B. Let f: R* — R be a continuous function of compact support (i.e., f vanishes outside
some bounded set).
(a) Show that

u(z) ::/ ) dy

|z =yl
converges, where the integral is over all y € R3.
(b) Show that lim,—. u(z)|z| exists.

Solution:(a) Let M be the maximum value of |f] (this exists, since f is 0 outside some
compact set and is continuous). Fix x. Choose R large enough that f(y) = 0if |z —y| > R.
Using polar coordinates centered at z, we have

|f(y)]
|z —y|

R
M
dyﬁ/ —(4nr*dr),
o T

which converges, so the integral defining u(x) converges absolutely.
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(b) By writing f(y) = max{f(y),0} +min{f(y),0}, we may reduce to the case that f is
nonnegative everywhere. Let Ry > 0 be such that f(y) = 0 for |y| > Ry. If |z| > nRy where
n is large, and |y| < Ry, then

|| lz| 1 1 n

= <
o=yl = el =yl T=Tlyl/lel =1 =1/n n—1
|| || 1 I n

> = < = .
o=yl ~ el + 1yl T+ fyl/lel T 1+ 10 a4l

n n
< < —
n+1/fdy_U($)|x|_n_1/fdy
for large . Thus lim, . u(z)|z| = [ fdy.

Hence

3B. For which positive integers n does there exist an n x n matrix A with rational entries
such that A3+ A+ 1 =07

Solution: The polynomial f(z) = 23+ z + 1 is irreducible over Q (because it is irreducible
modulo 2, or because of the rational root test, for instance). Since all eigenvalues of A are
roots of f(z), the characteristic polynomial of A divides a power of f(z), and hence is equal
to a power of f(x) by irreducibility. Therefore n must be a multiple of 3.

Conversely, if n = 3, we may let V = Q[z]/(2® + x + 1), and let A be the matrix (with
respect to some basis) of the Q-linear transformation V' — V given by multiplication by the
image of x. And for n any larger multiple of 3, we can take A to be block-diagonal with each
3 x 3 diagonal block equal to the solution for n = 3.

oo iwt

Vit

dt for every nonzero real number w. You may use the formula

4B. Evaluate I(w) := /
0

/ e~ dx = \/T.

o0

The substitution ¢t = u? yields

w):2/ooof(u)du

where f(u) := etwu’ Suppose w > 0. For R > 0, let v, be the straight-line path from 0 to
R, let 7 be the circular arc Re® for ¢ € [0,7/4], and let 3 be the straight-line path from
Re'™* to0 0. By Cauchy’s Theorem, Z?Zl f,y, f(u)du = 0. For u = Re®, we have

|f( )| —e Re(iwu?) _ e—wlm(uz) _ e—wR2 sin(2t) < 6—7.01122(2(2L‘)/7T)7
where the last step comes from the inequality sinxz < 2z /7 for x € [0,7/2] (concavity of
sin z on this interval). Therefore

) du| < / o wR2(2(20)/7) gy _ m

4wR?’
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which goes to 0 as R — oo. Hence

=—-21lim [ f(u)du

3

— 2/ f(eiw/élt) ei7r/4 dt
0

— 2/ e—wt2 eiﬂ’/4 dt
0

_ im/4 e—wt2 dt

8

*° 2
_ 6z7r/4 e—wt dt

— —

8

REy Y
V2 e WVw

—av0T

Also, I(—w) is the complex conjugate of I(w). Therefore, for any w # 0,

I(w) = (1+i sgn(w)) ﬁ

5B. What is the cardinality of the smallest field F' of characteristic 7 such that the equation
28 4+ 2"+ ... + 241 =0 has a solution x € F?

Solution: We have the identity
(- +2"+- -+ +1)=2" -1,

and the latter has no repeated factors over a field of characteristic 7 (since z'? — 1 has no

factors in common with its derivative), so the given condition is equivalent to the condition
that the multiplicative group F* contain a nontrivial element of order dividing 19. Since 19
is prime and F™* is a finite abelian group, this is equivalent to 19 | #F™*. The size of F is 7"
for some m > 1, so the condition becomes 19 | (7™ —1). We compute 72 = 11 (mod 19) and
73 =1 (mod 19), so the smallest possible m is 3, and the smallest possible field F' satisfying
the conditions is the field Fs of 73 = 343 elements.

6B. Suppose that f(z) is holomorphic on all of C except for a pole at z = 0. Prove that

I, (1 o
li - § = 2mik/n
noo 1 / (ne

exists.



Solution: If f were holomorphic at 0, then each term in the sum would be f(0) +O(1/n)
where the implied constant is independent of k£ and n, so the average of these f-values would
also be f(0) + O(1/n), which tends to f(0) as n — 0.

In general, using the Laurent series of f, we may write f as a finite linear combination of
functions of the form 2= for m > 0 plus one function that is holomorphic at 0. By linearity,
it remains to prove the statement for f(z) = z~™. In this case, the sum in the problem is a
finite geometric series, and its value is 0 when n > m.

7B. Let n > 1, and let M, (R) be the ring of n x n matrices over the field of real numbers.
What is the dimension of the subspace V' of M, (R) spanned by the matrices of the form
AB — BA where A, B € M,(R)?

Solution: Let E;; be the matrix with 1 in the (7, ) position and zeros elsewhere. Since
AB — BA is linear in each of A and B, the subspace V' equals the span of AB — BA where
A is some E;; and B is some Ej,. We have

0 if j#kandi#/¢
Ey if j=kandi#/
— Ly, ifj#kandi="/¢
E;,—FE;; itj=kandi="/{
Varying 1, j, k, ¢, we find that V is spanned by the set of all E;; with ¢ # j together with
the set of Ej;; — Eivq41 for i = 1,...,n — 1. These matrices are clearly independent, so

dimV = (n? —n) + (n — 1) =n? — 1. (A more elegant way to describe V' is as the space of
trace-zero matrices.)

EijExe — ExeEyj =

8B. A C? function y(z) for 0 < z < 1, a positive continuous function a(z) for 0 < z < 1,
and a real number \ satisfy

y'(w) + Aa(z)y(x) = 0,
y(0) =0,
y' (1) =0.
Suppose that y(x) is not identically zero. Prove that A > 0.

Solution: Multiply the ODE by y(z) and integrate from 0 to 1 to get

1 1
)\/ ay’dx = —/ yy” dx
0 0

1
= —yy|y + / y?dx  (integration by parts, with u =y, dv = y" dx)
0

1
:/ yl2dl'
0
> 0,

since if ¢’ were identically zero on [0, 1], then y would be constant on [0, 1], making y iden-
tically zero (since y(0) = 0). Since a > 0 and y is not identically zero, we also have

fol ay?dx > 0. Thus ) is a ratio of positive numbers, so A > 0.
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9B. Prove that every group of order 30 has a cyclic subgroup of order 15.

Solution: Let G be the group. For primes p|30, let n, be the number of Sylow p-subgroups
of G. Then n, = 1 (mod p) and n,|30/p. In particular ng is 1 or 10, and ns is 1 or
6. There are (p — 1)n, elements of exact order 3 in G. If ng = 10 and ns = 6, then
(3—1)n3+ (5 — 1)ns > #G, so either ng =1 or ny = 1.

Suppose nz = 1. Then there is a unique Sylow 3-subgroup P, and it is normal. Let g be
an element of order 5 in (G. Conjugation-by-g restricts to an automorphism of P of order
dividing 5, but #AutP = #(Z/37Z)* = 2, so this automorphism must be trivial. Thus ¢
commutes with every element of P. Hence the group generated by ¢ and P is isomorphic to
7.)37 X 7./57 ~ ZJ15Z.

If instead ns = 1, the same argument with 3 and 5 reversed works, since 3 does not divide

4(Z,)52)".



