
FALL 2006 PRELIMINARY EXAMINATION SOLUTIONS

1A. Compute

lim
x→0

d4

dx4

x

sin x
.

Solution: By Taylor’s formula,

sin x = x− x3

6
+

x5

120
+ o(x5).

Therefore
x

sin x
=

1

1− x2

6
+ x4

120
+ o(x4)

= 1 + (
x2

6
− x4

120
+ o(x4)) + (

x2

6
+ o(x2))2 + o(x4)

= 1 +
x2

6
+

[
1

36
− 1

120

]
x4 + o(x4).

Thus,

lim
x→0

d4

dx4

x

sin x
= 4!

[
1

36
− 1

120

]
=

2

3
− 1

5
=

7

15
.

2A. Let

A =

(
3 −2
1 0

)
.

Compute

eA :=
∞∑

n=0

An

n!
.

Solution: The matrix A has eigenvalues 2 and 1 with eigenvectors (2, 1) and (1, 1) respec-
tively. Therefore

A =

(
2 1
1 1

) (
2 0
0 1

) (
2 1
1 1

)−1

.

Observe that

eCBC−1

=
∞∑

n=0

(CBC−1)n

n!
=

∞∑
n=0

CBnC−1

n!
= CeBC−1.

Therefore

eA =

(
2 1
1 1

) (
e2 0
0 e

) (
2 1
1 1

)−1

=

(
2e2 e
e2 e

) (
1 −1
−1 2

)
=

(
2e2 − e −2e2 + 2e
e2 − e −e2 + 2e

)
.

3A. Let U be a connected open subset of C containing −2 and 0. Suppose that f : U → C
is a holomorphic function whose Taylor expansion at 0 is

∑
n≥0

(
2n
n

)
zn. Prove that f(−2) ∈
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{1/3,−1/3}. (Note: The original version of this problem had an error: {3,−3} instead of
{1/3,−1/3}.)

Solution: We claim that f(z)2 = (1− 4z)−1. Since a holomorphic function on a connected
open set is determined by its values on any nonempty open subset, it suffices to prove
f(z)2 = (1− 4z)−1 in a neighborhood of 0.

One way to do this is to expand (1− 4z)−1/2 using the binomial theorem, and check that
it agrees with

∑
n≥0

(
2n
n

)
zn. But this assumes that we guessed the formula (1− 4z)−1/2.

A more motivated solution is to find a differential equation satisfied by f(z) (in a neigh-
borhood of 0). Rewrite the series as

f =
∞∑

n=0

(2n− 1)!!

n!
(2z)n,

where (2n − 1)!! denotes the product of all odd positive integers up to 2n − 1. The series
satisfies the 1st order differential equation:

z
d

dz
f = 2z(2z

d

dz
+ 1)f.

It can be rewritten as
df

dz
=

2f

1− 4z
,

which is not hard to solve:∫
df

f
=

∫
2dz

1− 4z
, or ln f = −1

2
ln(1− 4f) + const,

i.e. f = C(1− 4z)−1/2. The value C = 1 is found from f(0) = 1.
Now f(−2)2 = (1− 4(−2))−1 = 1/9, so f(−2) ∈ {1/3,−1/3}.

4A. Let R be a finite commutative ring without zero-divisors and containing at least one
element other than 0. (As usual, rings are associative with 1.) Prove that R is a field.

Solution: Let a ∈ R, a 6= 0 and let f : R → R be f(x) = ax, x ∈ R. Then f is
one-to-one since there are no zero-divisors in R. Then f is onto since R is finite. Thus
there exists a unique xa ∈ R such that axa = a. Let us show that xa plays the role of
unity in R. Indeed, for every b ∈ R there is a unique xb ∈ R such that b = axb. We have
bxa = axbxa = axaxb = axb = b . So xa = 1. For each 0 6= b ∈ R there is a unique b′ with
bb′ = 1. Thus b′ = b−1.

5A. Let C0[0, 1] be the vector space over R consisting of continuous functions from [0, 1] to
R. Show that the linear operator T : C0[0, 1] → C0[0, 1] defined by

(Tf)(x) :=

∫ x

0

f(y) dy

has no nonzero eigenvectors.

Solution: Suppose that f ∈ C0[0, 1] and λ ∈ R satisfy Tf = λf . By the fundamental
theorem of calculus, Tf is differentiable, and its derivative is (Tf)′ = f . Therefore λf ′ = f .
Solving this differential equation (e.g. by separation of variables), we find that if λ = 0 then
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f = 0, while if λ 6= 0 then f = Cex/λ. But we observe that (Tf)(0) = 0, so in the case when
λ 6= 0 we have C = 0. Either way, f = 0. Thus T has no nonzero eigenvector.

6A. Let p be prime. Prove that the polynomial f (x) = xp − x + 1 is irreducible over the
field Fp of p elements.

Solution: Let α be a zero of f in some field extension of Fp. Because of the identity
(x+y)p = xp +yp in characteristic p, we have f(x+1) = f(x). By induction, f(x+a) = f(x)
for all a ∈ Fp. In particular, f(α + a) = f(α) = 0. Thus the p elements α + a for a ∈ Fp are
all the zeros of f(x).

Suppose f(x) = g(x)h(x) for some monic polynomials g, h ∈ Fp[x]. Then g(x) =
∏

i∈I(x−
(α + i)) for some subset I ⊆ Fp. The sum of the zeros of g is in Fp, so

(#I)α + (
∑
i∈I

i) ∈ Fp.

Thus (#I)α ∈ Fp. Since f is irreducible, α /∈ Fp, so #I must be divisible by p. In other
words, #I is 0 or p, so the factorization is trivial.

7A. Prove that for every a ∈ C and integer n ≥ 2, the equation 1 + z + azn = 0 has at least
one root in the disk |z| ≤ 2.

Solution: 1) If a = 0, the problem is trivial.

2) Let a 6= 0, b =
1

a
. Consider

(1) b + bz + zn = 0.

Let z1, . . . , zn be the roots of (1).

a) If |b| ≤ 2n then there is zi such that |zi| ≤ 2, since otherwise we would have |b| =
|z1 . . . zn| > 2n.

b) Let |b| > 2n and let f(z) = b(1 + z) + zn, g(z) = b(1 + z). Then |f(z) − g(z)| =
|zn| = 2n < |b| = |b|(|z| − 1) ≤ |b(1 + z)| = |g(z)| if |z| = 2. By Rouché’s Theorem,
the function f has as many roots inside the circle |z| = 2 as does the function g(z).
But g(z) has one, namely z = −1. Hence f also has one inside |z| = 2.

8A. Let Z denote the ring of integers and consider the linear map Z3 → Z3 defined by the
3× 3-matrix

A =

 6 9 12
6 9 12
12 18 24


Compute the structure of the three abelian groups kernel(A), image(A), and cokernel(A) =
Z3/image(A). In particular, in each case determine whether the group is free abelian. If yes,
give a basis.

Solution: We perform elementary row and column operations to diagonalize the matrix A: 1 0 0
−1 1 0
−2 0 1

 · A ·

−1 −3 −2
1 2 0
0 0 1

 =

3 0 0
0 0 0
0 0 0

 .
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Both transformation matrices have determinant one, so they are invertible over the integers.
Hence image, kernel and cokernel can be computed from the transformed matrix. We find

image(A) ' Z1, kernel(A) ' Z2, coker(A) ' Z2 ⊕ Z/2Z.

We see that the column vector (3, 3, 6)T is a basis for image(A). The last two columns of
the right transformation matrix give the basis

{
(−3, 2, 0)T , (−2, 0, 1)T

}
for kernel(A).

9A. Let k be a field such that the additive group of k is finitely generated. Prove that k is
finite.

Solution: First suppose that k has characteristic 0. A subgroup of a finitely generated
abelian group is also finitely generated, so if the additive group of k is finitely generated,
then so is the additive group of Q. But the additive group generated by a finite list of
rational numbers a1/b1, . . . , an/bn is contained in the integer multiples of 1/(b1 · · · bn), so if
p is a prime larger than |b1 · · · bn|, then 1/p is not in this group. This contradiction shows
that k cannot have characteristic 0.

Let p be the characteristic of k. Then k is a vector space over the field Fp of p elements.
Now, to say that k is finitely generated as an additive group is the same as saying that it is
finite-dimensional as an Fp-vector space. If d = dimFp k, then #k = pd, so k is finite.

1B. Let f : C → C be an entire function. Assume that |f(z2)| ≤ 2|f(z)| for all z ∈ C. Show
that f is constant.

Solution: By induction on n we have that |f(z2n
)| ≤ 2n|f(z)|.

(proof: n = 0 says |f(z1)| ≤ 1|f(z)|; if this is true for n then:

|f(z2n+1
)| = |f((z2n

)2)| ≤ 2|f(z2n
)| ≤ 2(2n)|f(z)|).

Let M = max{|f(z)| : |z| = 2}. Let Rn = 22n
. If |w| = Rn then w = z2n

for some z of
length 2, and so |f(w)| ≤ 2n|f(z)| ≤ 2nM .

For each integer m ≥ 1, by Cauchy’s inequalities for the circle about 0 of radius Rn,
|f (m)(0)| ≤ (2nM)/(Rn)m ≤ M(2n−2n

). But as n →∞, this converges to 0. So f (m)(0) = 0
for all m ≥ 1, and the power series of f is constant.

2B. Let C0[0, 1] be the vector space over R consisting of continuous functions from [0, 1] to
R. Show that the functions 1, x, x2, . . . are linearly independent in C0[0, 1].

Solution: Suppose that a finite linear combination p(x) = c0 + c1x + c2x
2 + · · · + cnx

n is
equal to zero in C0[0, 1], where c0, . . . , cn ∈ R. This means that p(x) = 0 for all x ∈ [0, 1].
We need to show that c0 = · · · = cn = 0. Pick any n + 1 distinct points a1, . . . , an+1 ∈ [0, 1].
Since p(a1) = 0, we have p(x) = (x− a1)q(x) where q is a polynomial of degree n− 1. Since
p(a2) = 0 and a2 − a1 6= 0, we have q(a2) = 0, so the polynomial q is divisible by x − a2.
Continuing, we find that the polynomial p is divisible by (x − a1) · · · (x − an+1), and since
the latter polynomial has degree n + 1, this is possible only if p = 0.

3B. Let f : R× [0, 1] → R be a continuous function. For x ∈ R, define

g(x) := max{f(x, y) : y ∈ [0, 1]}.
Show that g is continuous.
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Solution: Given a ∈ R, let A = [a− 1, a + 1]. K = A×[0, 1] is compact, so f restricted to
K is uniformly continuous. Given ε > 0, let δ > 0 be such that for all x, z ∈ A, |x− z| < δ
implies for all y ∈ [0, 1], |f(x, y)− f(z, y)| < ε.

So for x, z ∈ A, if |x− z| < δ, then g(x) < g(z) + ε
(proof: Let y be such that f(x, y) = g(x); so |f(x, y) − f(z, y)| < ε, and g(x) = f(x, y) <
f(z, y) + ε ≤ g(z) + ε).

By symmetry, for x, z ∈ A, if |x− z| < δ then |g(x)− g(z)| < ε. So g is continuous at a.

4B. Let f(x) ∈ Q[x] be an irreducible polynomial. Suppose there is a field extension F of
Q containing a root a of f(x) such that F does not contain any cube root of a. Show that
f(x3) is irreducible over Q.

Solution: Let n = deg f . Let b be a root of f(x3) in some field extension of Q. So b3 is a
root of f(x). Since f(x) is irreducible over Q, the fields Q(a) and Q(b3) are isomorphic via
an isomorphism that sends a to b3. Thus Q(b3) contains no root of the polynomial x3 − b3.
Since this is a cubic polynomial, this implies that x3 − b3 is irreducible over Q(b3). Thus
[Q(b) : Q(b3)] = 3. Since f(x) is of degree n and irreducible over Q, [Q(b3) : Q] = n.

So [Q(b) : Q] = [Q(b) : Q(b3)][Q(b3) : Q] = 3n = the degree of f(x3). Thus f(x3) is the
irreducible polynomial of b over Q.

5B. Let f and g be entire functions such that∫
|z|=1

f(z)

(sin z)m
dz =

∫
|z|=1

g(z)

(sin z)m
dz

for all positive integers m. Prove that f = g.

Solution: Suppose f 6= g. Let h(z) = f(z)− g(z), so∫
|z|=1

h(z)

(sin z)m
dz = 0.

Since h is not identically zero, we may take m = 1 + ordz=0 h(z). Then h(z)/(sin z)m has a
simple pole at z = 0 and is holomorphic elsewhere in |z| ≤ 1, so the residue theorem gives∫

|z|=1

h(z)

(sin z)m
dz 6= 0,

a contradiction.

6B. Let G be a nonabelian group of order 21. Find the largest positive integer n with the
property that whenever G acts on a set S of size n, some element of S is fixed by every
element of G.

Solution: Finite G-sets are finite unions of transitive G-sets, and each transitive G-set is
of the form G/H for some subgroup H (namely, H is the stabilizer of a point in the G-set).
Hence an integer n does not have the property if and only if there is a sequence of proper
subgroups of G whose indices sum to n. The possibilities for the index of a proper subgroup
of G are 3, 7, and 21 (consider Sylow subgroups, and the trivial group). Thus we seek the
largest n that is not a sum of integers each of which equals 3, 7, or 21. The set of such
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sums consists of numbers of the form 3k, numbers of the form 3k +1 that are at least 7, and
numbers of the form 3k +2 that are at least 14, so the largest n that is not such a sum is 11.

7B. Let X and Y be metric spaces, and let f1, f2, . . . be continuous functions from X to
Y . Suppose that the sequence {fn} converges uniformly to a function f . Show that f is
continuous.

Solution: Let ε > 0 and x ∈ X be given; we must find δ > 0 such that d(x, x′) < δ implies
d(f(x), f(x′)) < ε. Since the sequence {fn} converges uniformly to f , there exists n such
that for all x ∈ X we have d(fn(x), f(x)) < ε/3. Since fn is continuous, there exists δ > 0
such that d(x, x′) < δ implies d(fn(x), fn(x′)) < ε/3. In particular, d(x, x′) < δ implies that

d(f(x), f(x′)) ≤ d(f(x), fn(x)) + d(fn(x), fn(x′)) + d(fn(x′), f(x′))

<
ε

3
+

ε

3
+

ε

3
= ε.

8B. Let A be an n×n Hermitian matrix and B an n×n positive definite (complex) matrix.
Prove that there is an invertible complex n × n matrix S such that SHAS is diagonal and
SHBS = I. (Here SH denotes the conjugate transpose of the matrix S.)

Solution: Since B is positive definite there is a unitary V such that B = V DV H where D is
diagonal with positive diagonal. Let Q = V (

√
D)−1. Then QHBQ = (

√
D)−1V HBV (

√
D)−1 =

I. Then QHAQ is Hermitian hence there is a unitary U such that UH(QHAQ)U = Λ is di-
agonal. Set S = QU . We have SHBS = UHQHBQU = I and SHAS = UHQHAQU = Λ.

9B. Let z0, z1, . . . be a sequence of complex numbers such that zn+1 = 1 + 1/zn for all n ≥ 0.
Prove that the sequence is convergent.

Solution: Let f (z) = z+1
z

. Then the equation f (z) = z has two solutions

α =
1 +

√
5

2
, β =

1−
√

5

2
.

Let

w =
z − α

z − β
, z =

βw − α

w − 1
.

Then
f (z)− α

f (z)− β
=

z + 1− αz

z + 1− βz
.

Use α + β = 1 and αβ = −1,

z + 1− αz

z + 1− βz
=

βz + 1

αz + 1
=

β

α

z − α

z − β
=

β

α
w.

Therefore if zn+1 = f (zn), then wn+1 = γwn, where γ = β
α
. Since |γ| < 1,

lim
n→∞

wn = 0,

that implies
lim

n→∞
zn = α

for any z0, except z0 = β. If z0 = β, obviously the limit is β.

6


