FALL 2006 PRELIMINARY EXAMINATION SOLUTIONS

1A. Compute
dt

im —
=0 dat sin x

Solution: By Taylor’s formula,
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Solution: The matrix A has eigenvalues 2 and 1 with eigenvectors (2,1) and (1, 1) respec-

tively. Therefore
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3A. Let U be a connected open subset of C containing —2 and 0. Suppose that f: U — C

is a holomorphic function whose Taylor expansion at 0 is Y ., (*")z". Prove that f(—2) €
X >



{1/3,—1/3}. (Note: The original version of this problem had an error: {3, —3} instead of
{1/3,-1/3})

Solution: We claim that f(z)? = (1 —4z)~'. Since a holomorphic function on a connected
open set is determined by its values on any nonempty open subset, it suffices to prove
f(2)? = (1 —42)7! in a neighborhood of 0.

One way to do this is to expand (1 — 42)_1/ 2 using the binomial theorem, and check that
it agrees with >, ., (*)2". But this assumes that we guessed the formula (1 — 42)~1/2.

A more motivated solution is to find a differential equation satisfied by f(z) (in a neigh-
borhood of 0). Rewrite the series as

ey B Ry

where (2n — 1)!! denotes the product of all odd positive integers up to 2n — 1. The series
satisfies the 1st order differential equation:

d d
zaf = 22(225 +1)f.
It can be rewritten as
a _  2f
dz 1—4z’

which is not hard to solve:
d 2d 1
/7f = / | —Zz’ or Inf = —§ln(1 —4f) + const,

ie. f=C(1—42)"Y2 The value C = 1 is found from f(0) = 1.
Now f(—2)? = (1 —4(-2))"' =1/9, so f(-2) € {1/3,—-1/3}.

4A. Let R be a finite commutative ring without zero-divisors and containing at least one
element other than 0. (As usual, rings are associative with 1.) Prove that R is a field.

Solution: Let @ € R, a # 0 and let f : R — R be f(z) = ax, x € R. Then f is
one-to-one since there are no zero-divisors in R. Then f is onto since R is finite. Thus
there exists a unique z, € R such that ax, = a. Let us show that x, plays the role of
unity in R. Indeed, for every b € R there is a unique x;, € R such that b = ax,. We have
br, = axyr, = ar,x, = axy, =b . So x, = 1. For each 0 # b € R there is a unique b’ with
bb' = 1. Thus b’ = b1

5A. Let C°[0,1] be the vector space over R consisting of continuous functions from [0,1] to
R. Show that the linear operator T': C°[0,1] — C°[0, 1] defined by

/f ) dy

Solution: Suppose that f € C°[0,1] and A € R satisfy Tf = \f. By the fundamental
theorem of calculus, T'f is differentiable, and its derivative is (T'f)" = f. Therefore A\f' = f.

Solving this differential equation (e.g. by separation of variables), we find that if A = 0 then
2

has no nonzero eigenvectors.



f =0, while if A # 0 then f = Ce®/*. But we observe that (7'f)(0) = 0, so in the case when
A # 0 we have C' = 0. Either way, f = 0. Thus 7" has no nonzero eigenvector.

6A. Let p be prime. Prove that the polynomial f (x) = 2?7 — x 4 1 is irreducible over the
field ), of p elements.

Solution: Let o be a zero of f in some field extension of F,. Because of the identity
(x+y)P = 2P +yP in characteristic p, we have f(z+1) = f(z). By induction, f(z+a) = f(x)
for all @ € F,. In particular, f(aw+a) = f(«) = 0. Thus the p elements a + a for a € F, are
all the zeros of f(x).

Suppose f(z) = g(x)h(x) for some monic polynomials g, h € F,[z]. Then g(x) = [[,,(x —
(a4 1)) for some subset I C [F,. The sum of the zeros of ¢ is in F,, so

(#Da+ () i) €F,.
icl
Thus (#I)a € F,. Since f is irreducible, a ¢ F,, so #I must be divisible by p. In other
words, #1 is 0 or p, so the factorization is trivial.

7A. Prove that for every a € C and integer n > 2, the equation 1 + z + az"™ = 0 has at least
one root in the disk |z| < 2.

Solution: 1) If @ = 0, the problem is trivial.
1

2) Let a # 0, b = —. Consider
a

(1) b+bz+ 2" =0.
Let zq,..., 2, be the roots of (1).

a) If |b] < 2™ then there is z; such that |z;| < 2, since otherwise we would have |b| =
|21 ... 2] > 27

b) Let |b| > 2" and let f(z) = b(1 + z) + 2", g(2) = b(1 + z). Then [f(z) — g(2)| =
|27 = 2" < |b] = |b|(|z] = 1) < |b(1 + 2)| = |g(2)] if |z] = 2. By Rouché’s Theorem,
the function f has as many roots inside the circle |z| = 2 as does the function g(z).
But g(z) has one, namely z = —1. Hence f also has one inside |z| = 2.

8A. Let Z denote the ring of integers and consider the linear map Z3 — Z3 defined by the
3 X 3-matrix

6 9 12
A=16 9 12
12 18 24

Compute the structure of the three abelian groups kernel(A), image(A), and cokernel(A) =
Z3 /image(A). In particular, in each case determine whether the group is free abelian. If yes,
give a basis.

Solution: We perform elementary row and column operations to diagonalize the matrix A:
1 00 -1 -3 -2 3 00
-1 1 0]-A- 1 2 0 = 000
-2 0 1 0 0 1 000
3



Both transformation matrices have determinant one, so they are invertible over the integers.
Hence image, kernel and cokernel can be computed from the transformed matrix. We find

image(A) ~ Z', kernel(A) ~ Z*  coker(A) ~ Z* @ Z/2Z.

We see that the column vector (3,3,6)7 is a basis for image(A). The last two columns of
the right transformation matrix give the basis {(—3,2,0)7, (=2,0,1)"} for kernel(A).

9A. Let k be a field such that the additive group of k is finitely generated. Prove that k is
finite.

Solution: First suppose that k has characteristic 0. A subgroup of a finitely generated
abelian group is also finitely generated, so if the additive group of k is finitely generated,
then so is the additive group of Q. But the additive group generated by a finite list of
rational numbers a; /by, ..., a,/b, is contained in the integer multiples of 1/(by - - - b,), so if
p is a prime larger than |b; - - - b,|, then 1/p is not in this group. This contradiction shows
that k cannot have characteristic 0.

Let p be the characteristic of k. Then £ is a vector space over the field I, of p elements.
Now, to say that k is finitely generated as an additive group is the same as saying that it is
finite-dimensional as an IF,-vector space. If d = dimy, k, then #k = p?, so k is finite.

1B. Let f : C — C be an entire function. Assume that |f(2?)| < 2|f(z)] for all z € C. Show
that f is constant.

Solution: By induction on n we have that |f(z2")| < 2"|f(2)|.
(proof: n = 0 says |f(z')] < 1|f(z)]; if this is true for n then:
FE = ()] < 21/ ()] < 2271 (2)).

Let M = max{|f(z)| : |z| =2}. Let R, = 2% If |w| = R, then w = 2*" for some z of
length 2, and so |f(w)| < 2"|f(z)| < 2" M.

For each integer m > 1, by Cauchy’s inequalities for the circle about 0 of radius R,,
|f0(0)] < (2"M)/(R,)™ < M(2"72"). But as n — oo, this converges to 0. So f(™(0) =0
for all m > 1, and the power series of f is constant.

2B. Let C°[0,1] be the vector space over R consisting of continuous functions from [0, 1] to
R. Show that the functions 1, x, 2?2, ... are linearly independent in C°[0, 1].

Solution: Suppose that a finite linear combination p(z) = ¢y + c1x + o2 + - -+ + ¢, 2" is
equal to zero in C°[0,1], where cg,...,c, € R. This means that p(z) = 0 for all z € [0, 1].
We need to show that ¢y = --- = ¢, = 0. Pick any n + 1 distinct points ay,...,a,+1 € [0, 1].
Since p(a;) = 0, we have p(z) = (z — a1)q(z) where ¢ is a polynomial of degree n — 1. Since
plaz) = 0 and as — a; # 0, we have g(az) = 0, so the polynomial ¢ is divisible by z — ax.
Continuing, we find that the polynomial p is divisible by (z — a1)-- - (x — an41), and since
the latter polynomial has degree n + 1, this is possible only if p = 0.

3B. Let f: R x [0,1] — R be a continuous function. For « € R, define
g(x) = max{f(z,y) - y € [0,1]}.

Show that ¢ is continuous.



Solution: Given a € R, let A =[a—1,a+ 1]. K = Ax]0,1] is compact, so f restricted to
K is uniformly continuous. Given € > 0, let § > 0 be such that for all z,z € A, |z — z] < ¢
implies for all y € [0,1], |f(z,y) — f(z,y)] <e.

So for x,z € A, if |x — z| <9, then g(x) < g(z) + €
(proof: Let y be such that f(z,y) = g(x); so |f(z,y) — f(z,y)| < €, and g(x) = f(z,y) <
f(z,y) +e€<g(z)+e).

By symmetry, for ,z € A, if |x — z| < § then |g(x) — g(2)| < €. So g is continuous at a.

4B. Let f(z) € Q[z] be an irreducible polynomial. Suppose there is a field extension F' of
Q containing a root a of f(z) such that F' does not contain any cube root of a. Show that
f(a3) is irreducible over Q.

Solution: Let n = deg f. Let b be a root of f(x3) in some field extension of Q. So b is a
root of f(x). Since f(z) is irreducible over @, the fields Q(a) and Q(b*) are isomorphic via
an isomorphism that sends a to b*. Thus Q(b*) contains no root of the polynomial z* — b?.
Since this is a cubic polynomial, this implies that 23 — b® is irreducible over Q(b*). Thus
[Q(b) : Q(b)] = 3. Since f(x) is of degree n and irreducible over Q, [Q(b®) : Q] = n.

So [Q(b) : Q] = [Q(b) : Q(¥*)][Q(V?) : Q] = 3n = the degree of f(z3). Thus f(x?) is the

irreducible polynomial of b over Q.

5B. Let f and g be entire functions such that

/Z|1 (sfn(z))m dz = /Z|1 (sif?)m dz

for all positive integers m. Prove that f = g.

Solution: Suppose f # g. Let h(z) = f(2) — g(z), so

hz) . _
/|Z|_1 (Sin 2)™ dz = 0.

Since h is not identically zero, we may take m = 1 + ord,—o h(z). Then h(z)/(sin z)™ has a
simple pole at z = 0 and is holomorphic elsewhere in |z| < 1, so the residue theorem gives

/ hz) dz # 0,
|z]=1

(sin z)™

a contradiction.

6B. Let G be a nonabelian group of order 21. Find the largest positive integer n with the
property that whenever GG acts on a set S of size n, some element of S is fixed by every
element of G.

Solution: Finite G-sets are finite unions of transitive G-sets, and each transitive G-set is
of the form G/H for some subgroup H (namely, H is the stabilizer of a point in the G-set).
Hence an integer n does not have the property if and only if there is a sequence of proper
subgroups of G whose indices sum to n. The possibilities for the index of a proper subgroup
of G are 3, 7, and 21 (consider Sylow subgroups, and the trivial group). Thus we seek the

largest n that is not a sum of integers each of which equals 3, 7, or 21. The set of such
5



sums consists of numbers of the form 3%, numbers of the form 3k + 1 that are at least 7, and
numbers of the form 3k + 2 that are at least 14, so the largest n that is not such a sum is 11.

7B. Let X and Y be metric spaces, and let fi, fa,... be continuous functions from X to
Y. Suppose that the sequence {f,} converges uniformly to a function f. Show that f is
continuous.

Solution: Let € > 0 and x € X be given; we must find § > 0 such that d(x,z') < ¢ implies
d(f(z), f(z')) < e. Since the sequence {f,} converges uniformly to f, there exists n such
that for all x € X we have d(f,(z), f(x)) < €¢/3. Since f, is continuous, there exists § > 0
such that d(z,2") < ¢ implies d(f,(z), f.(2")) < €/3. In particular, d(z,2’) < § implies that

d(f(x), f(2) < d(f(x), fu(2)) + d(fa(@), fu(2")) + d(fa(2), f(2))
€ € €
< 3 + 3 + 3= €.
8B. Let A be an n x n Hermitian matrix and B an n x n positive definite (complex) matrix.

Prove that there is an invertible complex n x n matrix S such that S¥ AS is diagonal and
SHEBS = I. (Here S” denotes the conjugate transpose of the matrix S.)

Solution: Since B is positive definite there is a unitary V such that B = VDV# where D is
diagonal with positive diagonal. Let Q@ = V(v/D)~!. Then Q” BQ = (v D) 'V#BV(v/D)™*
I. Then Q¥ AQ is Hermitian hence there is a unitary U such that U#(Q# AQ)U = A is di-
agonal. Set S = QU. We have S¥BS = UHQ"BQU =1 and SHAS = UF Q7 AQU = A.

9B. Let zg, 21, . .. be a sequence of complex numbers such that z,,1 =1+ 1/z, for alln > 0.
Prove that the sequence is convergent.

Solution: Let f (z) = 2. Then the equation f (z) = z has two solutions

1++/5 1—5
a= = .
2 2
Let
Z— fw — «
w = A .
z—3 w—1
Then

fz)—a z+1—az

f(z)—=B8 =z+1-p82

Usea+ (B =1and af = —1,
z—}—l—az_ﬁz—i—l_@z—a 15}

24+1—-02z az+1l az—-0f «
Therefore if 2,1 = f (2,), then w, 1 = yw,, where v = g Since |y| < 1,

lim w, =0,

n—oo
that implies

lim z, = «
n—oo

for any zg, except zg = (. If zo = 3, obviously the limit is 3.
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