FALL 2007 PRELIMINARY EXAMINATION

1A. Let $\mathbb{Z}[i]$ be the set of complex numbers of the form a + bi where a and b range over all integers. List all subrings of $\mathbb{Z}[i]$. (Your list should contain each subring exactly once.)

2A. Let f(z) and g(z) be entire functions such that f'(z) = g(z), g'(z) = -f(z), and f(2z) = 2f(z)g(z) for all $z \in \mathbb{C}$. Find all possibilities for f(z).

3A. Let A be an $n \times n$ Hermitian matrix, and let $x \in \mathbb{C}^n$ be a vector such that $A^2x = 0$. Prove that Ax = 0.

4A. Let $(a_n)_{n\geq 1}$ and $(b_n)_{n\geq 1}$ be sequences of real numbers. Suppose that $0 \leq a_{n+1} \leq a_n + b_n$ for all $n \geq 1$, and that $\sum_{n=1}^{\infty} b_n$ converges. Prove that $\lim_{n\to\infty} a_n$ exists and is finite.

5A. Suppose that G is a finite group such that for each subgroup H of G there exists a homomorphism $\phi: G \to H$ such that $\phi(h) = h$ for all $h \in H$. Show that G is a product of groups of prime order.

6A. Let
$$f(z) = z^4 + \frac{z^3}{4} - \frac{1}{4}$$
. How many zeros does f have in $\{z \in \mathbb{C} : \frac{1}{2} < |z| < 1\}$?

7A. Let $P \in \mathbb{R}^{n \times n}$ be a matrix satisfying $P^3 = P$. Let r be the rank of P and assume r > 0. Show that there exist matrices $U, V \in \mathbb{R}^{n \times r}$ satisfying $V^T U = I_r$ such that

$$P = USV^T$$

where I_r is the $r \times r$ identity matrix, and S is an $r \times r$ diagonal matrix with ± 1 's on the diagonal.

8A. Suppose that $(b_n)_{n\geq 1}$ is a sequence of positive real numbers tending to infinity such that $b_n/n \to 0$. Must there exist a sequence $(a_n)_{n\geq 1}$ such that $(a_1 + \cdots + a_n)/n \to 0$ and $\limsup_{n\to\infty} (a_n/b_n) = \infty$?

9A. Let G be a non-abelian group of order 16 having a subgroup H isomorphic to $C_2 \times C_2 \times C_2$ (where C_2 denotes a cyclic group of order 2). Prove that the number of elements of G of exact order 2 is either 7 or 11.

1B. Let f(z) be a polynomial with complex coefficients, and let a be a complex number. Prove that $\{a, f(a), f(f(a)), \ldots\}$ is not dense in \mathbb{C} .

2B. Let A be an $n \times n$ complex matrix. Suppose that m is a positive integer such that A^m is diagonalizable. Prove that A^{m+1} is diagonalizable.

3B. Let $\{u_1, u_2, \dots, u_k\}$ be a set of linearly independent vectors in \mathbb{R}^n , and let \mathcal{A} be a closed set in \mathbb{R}^k . Let S be the set of linear combinations $\alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_k u_k$ obtained as $(\alpha_1, \alpha_2, \dots, \alpha_k)$ ranges over all points of \mathcal{A} . Show that S is a closed subset of \mathbb{R}^n .

4B. Let K and L be fields, and let $K \times L$ be the product ring, with addition and multiplication defined componentwise. Find all prime ideals of $K \times L$.

5B. Let f(z) be an entire function and let a_1, \ldots, a_n be all zeros of f in \mathbb{C} . Suppose that there exist real numbers R > 0 and a > 1 such that $|f(z)| \ge |z|^a$ for all $|z| \ge R$. Prove that

$$\sum_{j=1}^{n} \operatorname{Res}_{z=a_j} \frac{1}{f(z)} = 0$$

6B. Given a positive integer n, what are the possible values of the triple (rk(A), rk(B), rk(C)) as A, B, C range over real $n \times n$ matrices satisfying A + B + C = 0?

7B. Let f be continuous on $[0, \infty)$ and suppose that $\lim_{x \to \infty} f(x)$ exists and is finite. Must f be uniformly continuous? Give a proof or a counterexample.

8B. Show that for every positive integer n, there exists an irreducible polynomial over \mathbb{Q} of degree n such that all its roots are real.

9B. Let f be holomorphic on a neighborhood of the closed disk $\overline{B_1(0)} = \{z : |z| \leq 1\}$. Suppose that $\max_{|z|=1} |f(z)| \leq 1$. Prove that there exists a complex number z such that $|z| \leq 1$ and f(z) = z.